Question

I need a lab created for conservation of momentum using two hot wheel cars for the...

I need a lab created for conservation of momentum using two hot wheel cars for the collision. It has to be as if I was the teacher and needed to give this to my students.

Homework Answers

Answer #1

***************

- If you want to increase the difficulty add inelastic collision and give and make masses M1 and M2 unequal.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Revisiting the ballistic pendulum. In lab we used both conservation of momentum and conservation of energy...
Revisiting the ballistic pendulum. In lab we used both conservation of momentum and conservation of energy to relate the launch speed of a projectile to the maximum height of the swing of a pendulum. Here we will study the parts of this problem in a bit more detail. (a) Briefly explain why momentum is conserved during the collision of the projectile and the pendulum, but mechanical energy is not conserved. (b) Briefly explain why mechanical energy (kinetic plus potential energy)...
The physics students wish to test the law of conservation of angular momentum perform a completely...
The physics students wish to test the law of conservation of angular momentum perform a completely inelastic collision between two discs. They attach disc 1 (from part 1) to the rotational sensor then give it a spin. After about 4 seconds, they drop disc 2 on top of disc 1. The whole process takes only ~10 seconds total. Use the rate of change of the single disc angular velocity and the duration of the collision to find a corrected value...
The physics students wish to test the law of conservation of angular momentum and decides to...
The physics students wish to test the law of conservation of angular momentum and decides to perform a completely inelastic collision between two discs. They attach disc 1 (from part 1) to the rotational sensor then give it a spin. After about 4 seconds, they drop disc 2 on top of disc 1. The whole process takes only ~10 seconds total. The rotational sensor records the angle and velocity of the setup every 0.05 s. Question: Compare the rate of...
Suppose the two cars had rubber bumpers in the front and back – similar to the...
Suppose the two cars had rubber bumpers in the front and back – similar to the bumper cars children (of all ages!) ride at amusement parks. Also, suppose that the cars are sturdy enough that the metal they are made of does not bend during the collision. In this case, the cars would undergo a perfectly elastic collision. Assume just like in the first collision question that the SUV (initially moving to the right) collides into the stationary smart car....
I ONLY NEED PART B ANSWERED A 77.0-kg fullback running east with a speed of 5.40...
I ONLY NEED PART B ANSWERED A 77.0-kg fullback running east with a speed of 5.40 m/s is tackled by a 79.0-kg opponent running north with a speed of 3.00 m/s. (a) Explain why the successful tackle constitutes a perfectly inelastic collision. ___________________ (b) Calculate the velocity of the players immediately after the tackle. magnitude=_____ m/s direction=______ ° north of east HINT: Find the total momentum of the two players before the collision and use conservation of momentum to find...
Object A has mass mA = 8 kg and initial momentum A,i = < 19, -5,...
Object A has mass mA = 8 kg and initial momentum A,i = < 19, -5, 0 > kg · m/s, just before it strikes object B, which has mass mB = 11 kg. Just before the collision object B has initial momentum B,i = < 6, 6, 0 > kg · m/s. Consider a system consisting of both objects A and B. What is the total initial momentum of this system, just before the collision? sys,i = kg ·...
Object A has mass mA = 10 kg and initial momentum A,i = < 20, -5,...
Object A has mass mA = 10 kg and initial momentum A,i = < 20, -5, 0 > kg · m/s, just before it strikes object B, which has mass mB = 14 kg. Just before the collision object B has initial momentum B,i = < 3, 5, 0 > kg · m/s. Consider a system consisting of both objects A and B. What is the total initial momentum of this system, just before the collision? P sys,i = The...
I ONLY NEED PART B ANSWERED. EVERYTHING ELSE IS LISTED FOR INFO PURPOSES A. An object...
I ONLY NEED PART B ANSWERED. EVERYTHING ELSE IS LISTED FOR INFO PURPOSES A. An object of mass m1 = 17 kg and velocity v1 = 6.5 m/s crashes into another object of mass m2 = 5 kg and velocity v2 = −14.5 m/s. The two particles stick together as a result of the collision. Because no external forces are acting, the collision does not change the total momentum of the system of two particles, so the principle of conservation...
Object A has mass mA = 7 kg and initial momentum A,i = < 22, -6,...
Object A has mass mA = 7 kg and initial momentum A,i = < 22, -6, 0 > kg · m/s, just before it strikes object B, which has mass mB =  10 kg. Just before the collision object B has initial momentum B,i = < 2, 7, 0 > kg · m/s. Consider a system consisting of both objects A and B. What is the total initial momentum of this system, just before the collision? sys,i =   <24,1,0>    kg ·...
Two cars collide at an icy intersection and stick together afterward. The first car has a...
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1050 kg and was approaching at 9.00 m/s due south. The second car has a mass of 800 kg and was approaching at 20.0 m/s due west. (a) Calculate the final velocity of the cars. (Note that since both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x-axis and y-axis; instead, you must look...