Question

The work function of a particular substance is 5.3 × 10-19 J. What is the photoelectric...

The work function of a particular substance is 5.3 × 10-19 J. What is the photoelectric cutoff wavelength for this material? Enter your answer in nm.

Homework Answers

Answer #1

Einstein described the photoelectric effect using a formula that relates the maximum kinetic energy (Kmax) of the photoelectrons to the frequency of the absorbed photons (ƒ) and the threshold frequency (ƒ0) of the photoemissive surface.

it can aslo be written as

where is work function

        is threshold frequency

   is Threshold wave length or cutoff wavelength

so from given data work function is 5.3 × 10-19 J

cutoff wavelength is where h is Planck's constant 6.625*10^-34 Js, c is speed of light 3*10^8 m/s

substitutuing the values of h and c   = (6.626*10^-34 Js*3*10^8 m/s)/5.3*10^-19 J

we will get the cutoff wavelength as   = 375 nm

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a) A photoelectric surface has a work function of 3.30 x 10-19 J. What is the...
a) A photoelectric surface has a work function of 3.30 x 10-19 J. What is the threshold frequency of this surface? (format of a.bc x 10de Hz) b) What is the stopping voltage of an electron that has 5.40 x 10-19 J of kinetic energy? (3 digit answer) c) A photoelectric surface requires a light of maximum wavelength of 675 nm to cause electron emission. What is the work function (in eV) of this surface? (3 digit answer) d) A...
The work function of silicon is 7.24 × 10–19 J. Calculate the velocity of the emitted...
The work function of silicon is 7.24 × 10–19 J. Calculate the velocity of the emitted electron if the surface is irradiated with UV radiation of wavelength 240 nm. If lower velocity electrons were required, should a material with higher or lower work function be used? Explain.
(a) The work function for Cesium is 3.43 x 10-19 J. What is the kinetic energy...
(a) The work function for Cesium is 3.43 x 10-19 J. What is the kinetic energy of an electron liberated by radiation of 550 nm? (b) How many electrons are generated if the total energy absorbed at 550 nm is 1.00 x 10-3 J?
Sodium has a work function of 2.46 eV. (a) Find the cutoff wavelength and cutoff frequency...
Sodium has a work function of 2.46 eV. (a) Find the cutoff wavelength and cutoff frequency for the photoelectric effect. wavelength     _________ nm frequency     _________ Hz (b) What is the stopping potential if the incident light has a wavelength of 168 nm? _________________V
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus....
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus. A stopping voltage of 21 V was obtained. What is the threshold frequency of the metal? (format of a.b x 10cdHz) b) Light with a frequency of 5.00 x 1014 Hz illuminates a photoelectric surface that has a work function of 2.10 x 10-19 J. What is the maximum kinetic energy of the emitted photoelectrons? (format of a.bc x 10-de J ) c) Light...
photoelectric effect problem: work function for particular metal given what wavelength could cause the photo electrons...
photoelectric effect problem: work function for particular metal given what wavelength could cause the photo electrons to be released from sodium. Make up a problem with made up values and solve show all equations used to solve
In a photoelectric-effect experiment it is observed that no current flows unless the wavelength is less...
In a photoelectric-effect experiment it is observed that no current flows unless the wavelength is less than 490 nm . What is the work function of this material? Express your answer using two significant figures. W0 =    eV What is the stopping voltage required if light of wavelength 420 nm is used? Express your answer using two significant figures. V0 =    V
a) A photoelectric surface has a work function of 2.75 eV. What is the minimum frequency...
a) A photoelectric surface has a work function of 2.75 eV. What is the minimum frequency of light that will cause photoelectron emission from this surface ? answer in the format of a.bc x 10de Hz b) A photoelectric cell is illuminated with white light (wavelengths from 400 nm to 700 nm). What is the maximum kinetic energy (in eV) of the electrons emitted by this surface if its work function is 2.30 eV ? 4 digit answer
In a photoelectric-effect experiment it is observed that no current flows unless the wavelength is less...
In a photoelectric-effect experiment it is observed that no current flows unless the wavelength is less than 430 nm . Part A What is the work function of this material? Express your answer using two significant figures. W0 =    eV Part B What is the stopping voltage required if light of wavelength 380 nm is used? Express your answer using two significant figures. V?0 =    V
In a photoelectric experiment using a CalciumCalcium surface, you find a stopping potential of 0.71 V...
In a photoelectric experiment using a CalciumCalcium surface, you find a stopping potential of 0.71 V for a wavelength of 347 nm and a stopping potential of 2.86 V for a wavelength of 217 nm. Because this is an experiment, your value of Planck's constant will be slightly different from the official value. From these data find a) a value for Planck's constant h __________________×10−34J⋅s b) the work function for CalciumCalcium eVeV c) the cutoff wavelength for this metal