Question

A disc of radius R = 20.0 cm, mass M = 2.5kg is mounted on a...

A disc of radius R = 20.0 cm, mass M = 2.5kg is mounted on a frictionless, horizontal axle through O. A block of mass m = 5.0 kg is attached to a light string wrapped around the disc. When the block is released from rest from a height h = 2.25m above the floor, it accelerates  downward to hit the floor.

A) What is the potential energy of the block (in units of J) before it is released?

(Take the potential energy of the block as zero at h = 0.)

B) Using conservation of energy, determine vf (in m/s), the speed with which m hits the floor.

C) In terms of vf , calculated in the question above, what is the value of the tangential acceleration of a point P on the rim of the disc when m hits the floor?

D) In terms of vf , calculated above, what is the value of the radial acceleration ac of a point on the disc 10.0 cm from the center of the disc when m hits the floor?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A uniform cylinder of mass 100 kg and radius 50 cm is mounted so it is...
A uniform cylinder of mass 100 kg and radius 50 cm is mounted so it is free to rotate about a fixed, horizontal axis that passes through the centers of its circular ends. A 10-kg block is hung from a massless cord that is wrapped around the cylinder’s circumference. When the block is released, the cord unwinds and the block accelerates downward. a) What is the block’s acceleration?
Two metal disks are welded together and mounted on a frictionless axis through their common centre....
Two metal disks are welded together and mounted on a frictionless axis through their common centre. The radius, R1 of the first one is 2.5cm and its mass, M1 is 0.8 kg. The radius of the second disc, R2, is 5 cm and its mass, M2, is 1.6kg. A light string is wrapped around the edge of the smaller disc and a 1.5 kg block is suspended from the end of the string. If the block is released form rest...
in the figure a rope is wrapped around a wheel of radius R= 2.0 m. the...
in the figure a rope is wrapped around a wheel of radius R= 2.0 m. the moment of inertia if the wheel is 54 kg•m^2. the wheel is mounted with frictionless bearings on an axle through its center. A block of mass 14 kg is suspended from the end of the rope. when the system is released from rest it is observed that the block descends 10 m in 2.0 sec. what is the speed of the block?
A disk with mass m = 8.5 kg and radius R = 0.35 m begins at...
A disk with mass m = 8.5 kg and radius R = 0.35 m begins at rest and accelerates uniformly for t = 18.9 s, to a final angular speed of ? = 29 rad/s. a) What is the angular acceleration of the disk? b) What is the angular displacement over the 18.9 s? c) What is the moment of inertia of the disk? d) What is the change in rotational energy of the disk? e) What is the tangential...
A uniform circular platform of mass 100 kg and radius 3.0 m is mounted on a...
A uniform circular platform of mass 100 kg and radius 3.0 m is mounted on a frictionless vertical axle and is initially stationary. A girl of mass 40 kg stands on the rim of the platform. She begins to walk along the rim at a speed of 1.5 m/s relative to the ground in clockwise direction. What is the resulting angular velocity of the platform.
A block of mass m = 2.00 kg is released from rest at h = 0.400...
A block of mass m = 2.00 kg is released from rest at h = 0.400 m above the surface of a table, at the top of a θ = 20.0° incline as shown in the figure below. The frictionless incline is fixed on a table of height H = 2.00 m. How far from the table will the block hit the floor? What time interval elapses between when the block is released and when it hits the floor?
A wheel (disk) of radius 0.2 m and mass 1 kg are mounted on a frictionless...
A wheel (disk) of radius 0.2 m and mass 1 kg are mounted on a frictionless horizontal axis. A massless cord is wrapped around the wheel and attached to a 2 kg object that slides on a frictionless surface inclined at an angle of 60 degrees with the horizontal. What is the acceleration of the block as well as the angular acceleration of the wheel about its axis of rotation? Answer: 6.93 m/s^2, 34.64 rad/s^2
A disk with mass m = 10.3 kg and radius R = 0.34 m begins at...
A disk with mass m = 10.3 kg and radius R = 0.34 m begins at rest and accelerates uniformly for t = 16.8 s, to a final angular speed of ω = 26 rad/s. 1) What is the angular acceleration of the disk? rad/s2 2) What is the angular displacement over the 16.8 s? rad 3) What is the moment of inertia of the disk? kg-m2 4) What is the change in rotational energy of the disk? J 5)...
A solid uniform disk of mass M = 9.6 kg and radius R = 21 cm...
A solid uniform disk of mass M = 9.6 kg and radius R = 21 cm rests with its flat surface on a frictionless table (i.e., the axis of the cylinder is perpendicular to the table.) The diagram shows a top view. A string is wrapped around the rim of the disk and a constant force of F = 10.8 N is applied to the string. The string does not slip on the rim. 1) What is the acceleration of...
A disc of mass m, and radius r, is spinning at an angular velocity of ω....
A disc of mass m, and radius r, is spinning at an angular velocity of ω. A force, F, is applied at the edge of the disc, in a direction tangential to the discs circumference. The force is applied for a total time t. What is its equation for final angular velocity?