Question

A 7.2 mm diameter conducting wire carries a current of 3.8 A. If the density of...

A 7.2 mm diameter conducting wire carries a current of 3.8 A. If the density of the conduction electrons (free electrons) in the wire is n=19.6×1028m-3, determine the magnitude of the drift velocity of the electrons within the wire. Express your answer in units of μm/s (micrometers per second) using one decimal place. Take the charge of the electron e=1.6×10-19C.

Homework Answers

Answer #1

Therefore, the drift velocity in the wire is 2.9 m/sec(micrometers per second).

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A copper wire with diameter of 1,5 mm and length of 4m carries constant current of...
A copper wire with diameter of 1,5 mm and length of 4m carries constant current of 1.75 A. The free electron density in the wire is 8,5x1028 m-3. The resistivity of copper is 1,72x10-8 capital omega.m. Calculate a) current density, b)drift velocity, c) magnitude of electric field, d) potential between the terminals of wire, e)power dissipated as heat f) mean free time. (mass of electron: 9,1x10-31kg, magnitude of charge of electron: 1,6x10-19 C)
A copper wire with diameter of 1,5 mm and length of 4m carries constant current of...
A copper wire with diameter of 1,5 mm and length of 4m carries constant current of 1.75 A. The free electron density in the wire is 8,5x1028 m-3. The resistivity of copper is 1,72x10-8 .m. Calculate   a) current density, b)drift velocity, c) magnitude of electric field, d) potential between the terminals of wire, e)power dissipated as heat f) mean free time. (mass of electron: 9,1x10-31kg, magnitude of charge of electron: 1,6x10-19 C)
A copper wire that has a diameter of 2.00 mm carries a current of 10.0 A....
A copper wire that has a diameter of 2.00 mm carries a current of 10.0 A. Assuming that each copper atom contributes one free electron to the metal, calculate the drift speed of the electrons in the wire. The molar mass of copper is 63.5 g/mol and the density of copper is 8.95 g/cm3.
Assume that a gold wire 0.32 mm in diameter carries one mobile electron per atom. The...
Assume that a gold wire 0.32 mm in diameter carries one mobile electron per atom. The mass density and the molecular weight of gold are 1.89×104 kg/m3 and 197.0 g/mol, respectively. Calculate the drift speed of the electrons in this wire when it carries a current of 2.44 A. (ans. 3.28×10-3 m/s)
A copper wire has a square cross section 3.0 mm on a side. The wire is...
A copper wire has a square cross section 3.0 mm on a side. The wire is 3.8 m long and carries a current of 3.5 A. The density of free electrons is 8.5×1028m−3. A) Find the magnitude of the electric field in the wire. Express your answer in volts per meter. B) How much time is required for an electron to travel the length of the wire? Express your answer in seconds
A silver wire 2.7 mm in diameter transfers a charge of 431 C in 88 min....
A silver wire 2.7 mm in diameter transfers a charge of 431 C in 88 min. Silver contains 5.8 × 1028 free electrons per cubic meter. What is the magnitude of the drift velocity of the electrons in the wire? (Give your answer in scientific notation using m/s as unit)
A 10 gauge copper wire carries a current of 12 A. Assuming one free electron per...
A 10 gauge copper wire carries a current of 12 A. Assuming one free electron per copper atom, calculate the drift velocity of the electrons. (The cross-sectional area of a 10-gauge wire is 5.261 mm2.) ...........................mm/s
There is a wire made of copper with a diameter of 3.26 mm. A current of...
There is a wire made of copper with a diameter of 3.26 mm. A current of 20.0 A was applied to this wire. Answer the following question assuming that the electron density of copper is n = 8.47 × 1028 m-3. (1) Find the current density. (2) Find the electron drift velocity. (3) When the resistivity of copper is 1.70 × 10-8 Ω·m, find the voltage drop that occurs along the length of this wire. (4) Find the electron mobility.
If 2.91×1020 electrons flow through a cross section of a 4.43 mm diameter Gold wire in...
If 2.91×1020 electrons flow through a cross section of a 4.43 mm diameter Gold wire in 5.75 s, then what is the drift speed of the electrons? (The density of conduction electrons in Gold is n = 5.90×1028 1/m3.) (in mm/s)
Calculate the drift velocity of electrons in a copper wire which has a diameter of 3.256...
Calculate the drift velocity of electrons in a copper wire which has a diameter of 3.256 mm and carrying a 15.0–A current, given that there is one free electron per copper atom. The density of copper is 8.80×103 kg/m3.