Question

A uniform disc of mass M=2.0 kg and radius R=0.45 m rolls without slipping down an inclined plane of length L=40 m and slope of 30°. The disk starts from rest at the top of the incline. Find the angular velocity at the bottom of the incline.

Answer #1

here,

mass of disc , m = 2 kg

radius , r = 0.45 m

L = 40 m

theta = 30 degree

let the angular velocity at the bottom of the incline be w

using conservation of energy

(0.5 * I * w^2 + 0.5 * m * v^2) - (0.5 * I * w0^2 + 0.5 * m * u^2) = m * g * (L * sin(theta))

(0.5 * 0.5 * m * r^2 * (v/r)^2 + 0.5 * m * v^2) - (0.5 * I * 0^2 + 0.5 * m * 0^2) = 2 * 9.81 * (40 * sin(30))

0.75 * v^2 = 9.81 * 40 * sin(30)

solving for v

v = 16.2 m/s

the angular velocity of disk at the bottom , w = v /r

w = 16.2 /0.45 rad/s = 35.95 rad/s

A solid, uniform sphere of mass 2.0 kg and radius 1.7m rolls
without slipping down an inclined plane of height 7.0m . What is
the angular velocity of the sphere at the bottom of the inclined
plane? a) 5.8 rad/s b) 11.0 rad/s c) 7.0 rad/s d) 9.9 rad/s

A 320-N sphere 0.20 m in radius rolls without slipping 6.0 m
down a ramp that is inclined at 34° with the horizontal. What is
the angular speed of the sphere at the bottom of the slope if it
starts from rest?

A 350-N sphere 0.20 m in radius rolls without slipping 6.0 m
down a ramp that is inclined at 25° with the horizontal. What is
the angular speed of the sphere at the bottom of the slope if it
starts from rest? rad/s

A 340-N sphere 0.20 m in radius rolls without slipping 6.0 m
down a ramp that is inclined at 34° with the horizontal. What is
the angular speed of the sphere at the bottom of the slope if it
starts from rest?
in rad/s

Suppose a solid sphere of mass 450 g and radius 5.00 cm rolls
without slipping down an inclined plane starting from rest. The
inclined plane is 7.00 m long and makes an angel of 20.0 o from the
horizontal. The linear velocity of the sphere at the bottom of the
incline is _______ m/s. please show work

A solid, uniform disk of radius 0.250 m and mass 54.1 kg rolls
down a ramp of length 3.80 m that makes an angle of 12.0° with the
horizontal. The disk starts from rest from the top of the ramp.
(a) Find the speed of the disk's center of mass when it reaches
the bottom of the ramp.
___________m/s
(b) Find the angular speed of the disk at the bottom of the
ramp.
___________rad/s

A thumbtack rolls down an inclined plane without slipping, the
motion is similar to a pendulum when looking from above. The
thumbtack is a disk of mass M and radius R with a massless stem of
length L from the center of the disk. The inclined plane has an
angle of theta.
Write down the Lagrangian for this system and find the angular
frequency of oscillation away from the equilibrium position of the
thumbtack.

.A
uniform sphere of mass m radius r starts rolling down without
slipping from the top of another larger sphere of radius R. Find
the angular velocity of the sphere after it leaves the surface of
the larger sphere.

Problem 4
A hoop and a solid disk both with Mass (M=0.5 kg) and radius (R=
0.5 m) are placed at the top of an incline at height (h= 10.0 m).
The objects are released from rest and rolls down without
slipping.
a) The solid disk reaches to the bottom of the inclined plane
before the hoop. explain why?
b) Calculate the rotational inertia (moment of inertia) for the
hoop.
c) Calculate the rotational inertia (moment of inertia) for the...

A solid cylinder rolls without slipping down a 30° incline that
is 5.0 m long. The cylinder's mass is 3.0 kg and its diameter is 44
cmcm . The cylinder starts from rest at the top of the ramp.
1) What is the linear speed of the center of the cylinder when
it reaches the bottom of the ramp.
2) What is the angular speed of the cylinder about its center at
the bottom of the ramp.
3) What is...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 30 minutes ago

asked 31 minutes ago

asked 41 minutes ago

asked 48 minutes ago

asked 56 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago