Question

Two objects of masses 1 kg and 4 kg are at rest next to a compressed...

Two objects of masses 1 kg and 4 kg are at rest next to a compressed spring. The spring stores an energy j. When it is released, it gives all its energy to the blocks and falls to the ground. Now, their speeds are vi v4. Find v4. (There is no friction.)

Homework Answers

Answer #1

Solution :

Given :

m1 = 1 kg

m4 = 4 kg

USpring = 2250 J

.

According to the conservation of energy :

∴ KE1 + KE4 = USpring

∴ (1/2) m1 (v1)2 + (1/2) m4 (v4)2 = USpring

∴ (v1)2 + 4 (v4)2 = 4500 J . . . (i)

.

Now, According to the conservation of momentum : Pf = Pi

∴ m1 v1 + m4 v4 = 0

∴ (1 kg) v1 + (4 kg) v4 = 0

∴ v1 = - 4 v4

.

Therefore, From equation (i) :

∴ (- 4 v4)2 + 4 (v4)2 = 4500 J

∴ 16 (v4)2 + 4 (v4)2 = 4500 J

∴ 20 (v4)2 = 4500 J

∴ (v4)2 = 225 J

∴ v4 = 15 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two objects of masses m1 = 0.40 kg and m2 = 0.92 kg are placed on...
Two objects of masses m1 = 0.40 kg and m2 = 0.92 kg are placed on a horizontal frictionless surface and a compressed spring of force constant k = 290 N/m is placed between them as in figure (a). Neglect the mass of the spring. The spring is not attached to either object and is compressed a distance of 9.6 cm. If the objects are released from rest, find the final velocity of each object as shown in figure (b)....
Two blocks with masses 3.0 kg and 5.0 kg are placed on a horizontal frictionless surface....
Two blocks with masses 3.0 kg and 5.0 kg are placed on a horizontal frictionless surface. A light spring is placed in a horizontal position between the blocks. The blocks are pushed together, compressing the spring, and then released from rest. After contact with the spring ends, the 5.0-kg mass has a speed of 2.0 m/s. How much potential energy was stored in the spring when the blocks were released?
Two blocks are held together, with a compressed spring between them, on a horizontal frictionless surface....
Two blocks are held together, with a compressed spring between them, on a horizontal frictionless surface. When the system is released, the spring pushes the blocks apart and they then move off in opposite directions. The spring remains behind, and you can assume that all of its energy is transformed to the kinetic energy of the blocks. Find the kinetic energy of block A HomeworkUnanswered The mass of block A is 3.00 times the mass of block B, and the...
Objects with masses m1 = 11.0 kg and m2 = 8.0 kg are connected by a...
Objects with masses m1 = 11.0 kg and m2 = 8.0 kg are connected by a light string that passes over a frictionless pulley as in the figure below. If, when the system starts from rest, m2 falls 1.00 m in 1.54 s, determine the coefficient of kinetic friction between m1 and the table.
Two blocks with masses 0.443 kg (A) and 0.769 kg (B) sit on a frictionless surface....
Two blocks with masses 0.443 kg (A) and 0.769 kg (B) sit on a frictionless surface. Between them is a spring with spring constant 26 N/m, which is not attached to either block The two blocks are pushed together, compressing the spring by 0.338 meter, after which the system is released from rest. What is the final speed of the block A? (Hint: you will need to use both conservation of energy and conservation of momentum to solve this problem)....
Two blocks with masses m1 = 1.10 kg and m2 = 3.50 kg are connected by...
Two blocks with masses m1 = 1.10 kg and m2 = 3.50 kg are connected by a massless string. They are released from rest. The coefficent of kinetic friction between the upper block and the surface is 0.440. Assume that the pulley has a negligible mass and is frictionless, and calculate the speed of the blocks after they have moved a distance 68.0 cm.
Objects with masses m1 = 12.0 kg and m2 = 8.0 kg are connected by a...
Objects with masses m1 = 12.0 kg and m2 = 8.0 kg are connected by a light string that passes over a frictionless pulley as in the figure below. If, when the system starts from rest, m2 falls 1.00 m in 1.48 s, determine the coefficient of kinetic friction between m1 and the table.    Express the friction force in terms of the coefficient of kinetic friction. Obtain an expression for the acceleration in terms of the masses and the...
1.The potential energy stored in the compressed spring of a dart gun, with a spring constant...
1.The potential energy stored in the compressed spring of a dart gun, with a spring constant of 62.00 N/m, is 0.980 J. Find by how much is the spring is compressed. 2.A 0.170 kg dart is fired straight up. Find the vertical distance the dart travels from its position when the spring is compressed to its highest position. 3.The same dart is now fired horizontally from a height of 4.30 m. The dart remains in contact until the spring reaches...
07.1 A 2.00kg mass is initially at rest on the end of a spring that is...
07.1 A 2.00kg mass is initially at rest on the end of a spring that is compressed by 40.0cm from its equilibrium position. The spring has spring constant 800 N/m. This mass is released and the mass shoots away from the spring on a frictionless, horizontal surface. It then hits a 3.00kg mass, and the two masses stick together and slide up a rough-surface hill (with friction) on the other side to a vertical height of 30.0cm. (a) What was...
Two objects of masses m1=2 kg and m2=4 kg are moving with the same momentum of...
Two objects of masses m1=2 kg and m2=4 kg are moving with the same momentum of 20 kg m s-1. Calculate the kinatic energy (KE) for m1?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT