Question

The position ? of a particle moving in space from (t=0 to 3.00 s) is given...

The position ? of a particle moving in space from (t=0 to 3.00 s) is given by ? = (6.00?^2− 2.00t^3 )i+ (3.00? − ?^2 )j+ (7.00?)? in meters and t in seconds. Calculate (for t = 1.57 s): a. The magnitude and direction of the velocity (relative to +x). b. The magnitude and direction of the acceleration (relative to +y). c. The angle between the velocity and the acceleration vector. d. The average velocity from (t=0 to 3.00 s). (magnitude and direction) e. The maximum distance reached by the particle in the x-direction and the y-direction during 3 s

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 4.71 kg mass moving in space according to v= (6.00t2 - t)i + (15.0t2)j +(t3...
A 4.71 kg mass moving in space according to v= (6.00t2 - t)i + (15.0t2)j +(t3 + 3.14t)k (relative to the origin), with v in meter/second and t in seconds. At t= 1.57s (a) what are the magnitude and direction of the force acting on the mass (b) what is the angle between the acceleration and velocity vector (c) what is the average velocity? (d) What is the mass angular momentum relative to the origin? (e) What is the torque...
The acceleration of a particle moving only on a horizontal xy plane is given by a→=3ti^+4tj^,...
The acceleration of a particle moving only on a horizontal xy plane is given by a→=3ti^+4tj^, where a→ is in meters per second-squared and t is in seconds. At t = 0, the position vector r→=(19.0m)i^+(44.0m)j^ locates the particle, which then has the velocity vector v→=(5.40m/s)i^+(1.70m/s)j^. At t = 4.10 s, what are (a) its position vector in unit-vector notation and (b) the angle between its direction of travel and the positive direction of the x axis?
The acceleration of a particle moving only on a horizontal xy plane is given by ModifyingAbove...
The acceleration of a particle moving only on a horizontal xy plane is given by ModifyingAbove a With right-arrow equals 4t ModifyingAbove i With caret plus 5t ModifyingAbove j With caret, where ModifyingAbove a With right-arrow is in meters per second-squared and t is in seconds. At t = 0, the position vector ModifyingAbove r With right-arrow equals left-parenthesis 24.0mright-parenthesis ModifyingAbove i With caret plus left-parenthesis 49.0mright-parenthesis ModifyingAbove j With caret locates the particle, which then has the velocity vector...
A particle moves with position r(t) = x(t) i + y(t) j where x(t) = 10t2...
A particle moves with position r(t) = x(t) i + y(t) j where x(t) = 10t2 and y(t) = -3t + 2, with x and y in meters and t in seconds. (a) Find the average velocity for the time interval from 1.00 s to 3.00 s. (b) Find the instantaneous velocity at t = 1.00 s. (c) Find the average acceleration from 1.00 s to 3.00 s. (d) Find the instantaneous acceleration at t = 1.00 s.
The position of a particle moving with constant acceleration is given by x(t) = 2t2 +...
The position of a particle moving with constant acceleration is given by x(t) = 2t2 + 8t + 4 where x is in meters and t is in seconds. (a) Calculate the average velocity of this particle between t = 6 seconds and t = 9 seconds.   (b) At what time during this interval is the average velocity equal to the instantaneous velocity?   
A particle moves in the xy plane, starting from the origin at t=0 with an initial...
A particle moves in the xy plane, starting from the origin at t=0 with an initial velocity having an x-component of 6 m/s and y component of 5 m/s. The particle experiences an acceleration in the x-direction, given by ax=4t m/s2. Determine the acceleration vector at any later time. Determine the total velocity vector at any later time Calculate the velocity and speed of the particle at t=5.0 s, and the angle the velocity vector makes with the x-axis. Determine...
A particle moving in the xy-plane has velocity v⃗ =(2ti+(3−t2)j)m/s, where t is in s. What...
A particle moving in the xy-plane has velocity v⃗ =(2ti+(3−t2)j)m/s, where t is in s. What is the x component of the particle's acceleration vector at t = 7 s? What is the y component of the particle's acceleration vector at t = 7 s?
Consider a particle moving through space with velocity v(t) = cos(t)i−sin(t)j + tk. (i) (3 marks)...
Consider a particle moving through space with velocity v(t) = cos(t)i−sin(t)j + tk. (i) Determine its acceleration vector. (ii) Determine the position vector, supposing the particle starts at position (3,−2,3) at time t = 0.
The position of a particle moving with constant acceleration is given by x(t) = 4t2 +...
The position of a particle moving with constant acceleration is given by x(t) = 4t2 + 3t + 4 where x is in meters and t is in seconds. (a) Calculate the average velocity of this particle between t = 2 seconds and t = 7 seconds. (b) At what time during this interval is the average velocity equal to the instantaneous velocity? (c) How does this time compare to the average time for this interval? a. It is larger....
A particle moves in the xy plane. Its position vector function of time is ?⃑ =...
A particle moves in the xy plane. Its position vector function of time is ?⃑ = (2?3 − 5?)?̂ + (6 − 7?4)?̂ where r is in meters and t is in seconds. a) In unit vector notation calculate the position vector at t =2 s. b) Find the magnitude and direction of the position vector for part a. c) In unit vector notation calculate the velocity vector at t =2 s. d) Find the magnitude and direction of the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT