Question

Two coils are close to each other. The first coil carries a current given by i(t)...

Two coils are close to each other. The first coil carries a current given by i(t) = 4.40e−0.0250t sin 120πt, where i is in amperes and t is in seconds. At t = 0.830 s, the emf measured across the second coil is −3.05 V.

What is the mutual inductance of the coils?

answer = _____ my ?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two coils are close to each other. The first coil carries a current given by i(t)...
Two coils are close to each other. The first coil carries a current given by i(t) = 5.70e^−0.0250t sin 120πt, where i is in amperes and t is in seconds. At t = 0.895 s, the emf measured across the second coil is −2.20 V. What is the mutual inductance of the coils?
Two coils are close to each other. The first coil carries a current given by i(t)...
Two coils are close to each other. The first coil carries a current given by i(t) = 4.00e−0.0250t sin 120πt, where i is in amperes and t is in seconds. At t = 0.725 s, the emf measured across the second coil is −3.00 V. What is the mutual inductance of the coils? _____mH
Two coils are wound around the same cylindrical form. When the current in the first coil...
Two coils are wound around the same cylindrical form. When the current in the first coil is decreasing at a rate of -0.242 A/s, the induced emf in the second coil has magnitude 1.65 x 10-3 V and the mutual inductance of the two coils is 6.82 mH. If the current in the first coil becomes constant, what happens to the mutual inductance?
The current through a coil as a function of time is represented by the equation I(t)...
The current through a coil as a function of time is represented by the equation I(t) = Ae−bt sin(ωt), where A = 5.25 A, b = 1.75 ✕ 10−2 s−1, and ω = 375 rad/s. At t = 0.880 s, this changing current induces an emf in a second coil that is close by. If the mutual inductance between the two coils is 4.35 mH, determine the induced emf. (Assume we are using a consistent sign convention for both coils....
Two coils are at fixed locations. When coil 1 has no current and the current in...
Two coils are at fixed locations. When coil 1 has no current and the current in coil 2 increases at the rate 17.7 A/s, the emf in coil 1 is 28.3 mV. (a) What is their mutual inductance? (b) When coil 2 has no current and coil 1 has a current of 6.40 A, what is the flux linkage in coil 2?
two circular coils of current-carrying wire have the same magnetic moment. the first coil has a...
two circular coils of current-carrying wire have the same magnetic moment. the first coil has a radius of 0.088m, has 140 turns and carries a current of 4.2a. the second coil has 170 turns and carries a current of 9.5a. what is the radius of the second coil? the second coil experiences a torque of 1.53 in a magnetic field of 1.5 T. What is the orientation of the magnetic field?
A long solenoid has n = 390 turns per meter and carries a current given by...
A long solenoid has n = 390 turns per meter and carries a current given by I = 29.0(1 − e−1.60t ), where I is in amperes and t is in seconds. Inside the solenoid and coaxial with it is a coil that has a radius of R = 6.00 cm and consists of a total of N = 250 turns of fine wire (see figure below). What emf is induced in the coil by the changing current? (Use the...
1)The current in a 60.0-mH inductor changes with time as i = 4.00t2 − 7.00t, where...
1)The current in a 60.0-mH inductor changes with time as i = 4.00t2 − 7.00t, where i is in amperes and t is in seconds. (a) Find the magnitude of the induced emf at t = 1.00 s. (b) Find the magnitude of the induced emf at t = 4.00 s. (c) At what time is the emf zero? 2)A 499-turn solenoid has a radius of 7.10 mm and an overall length of 15.4 cm. (a) What is its inductance?...
a)Assume that there is a long ideal solenoid with 120 turns/cm. It carries a current i=...
a)Assume that there is a long ideal solenoid with 120 turns/cm. It carries a current i= 2 A and it has a diameter 2 cm and a length 5 m. Find the uniform magnetic field inside the solenoid. b) Insert a single circular coil at the center of the long ideal solenoid that is mentioned at part (a). Solenoid and coil are coaxial. Coil has diameter 0.5 cm. Now the current in the solenoid decreases steadily from 2 A to...
a) Assume that there is a long ideal solenoid with 120 turns/cm. It carries a current...
a) Assume that there is a long ideal solenoid with 120 turns/cm. It carries a current i= 2 A and it has a diameter 2 cm and a length 5 m. Find the uniform magnetic field inside the solenoid. Select one: 150 mT 0,30 mT 2 mT 30 mT 9.5 μT b) Insert a single circular coil at the center of the long ideal solenoid that is mentioned at part (a). Solenoid and coil are coaxial. Coil has diameter 0.5...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT