Question

What must be the spin on a tennis ball moving horizontally at 50mph, such that it...

What must be the spin on a tennis ball moving horizontally at 50mph, such that it begins rising because of the Magnus force?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A tennis player serves a tennis ball such that it is moving horizontally when it leaves...
A tennis player serves a tennis ball such that it is moving horizontally when it leaves the racquet. When the ball travels a horizontal distance of 11 m, it has dropped 53 cmfrom its original height when it left the racquet. What was the initial speed, in m/s, of the tennis ball? (Neglect air resistance.)   
(a) During a tennis serve, the ball leaves the server's racquet horizontally 2.5 m above the...
(a) During a tennis serve, the ball leaves the server's racquet horizontally 2.5 m above the court surface. What is the required launch speed for the ball to barely clear the net, which is 15 m away and 0.90 m high? (For simplicity, assume the ball travels along the middle of the court, rather than diagonally.) m/s (b) How far beyond the net does the ball land? m past the net (c) What launch speed would be required to have...
A tennis ball is struck and departs from the racket horizontally with a speed of 28.9...
A tennis ball is struck and departs from the racket horizontally with a speed of 28.9 m/s. The ball hits the court at a horizontal distance of 18.8 m from the racket. How far above the court is the tennis ball when it leaves the racket?
A soft ball (m = 0.14 kg) moving horizontally to the right hits a wall with...
A soft ball (m = 0.14 kg) moving horizontally to the right hits a wall with a speed of 16.2 m/s. After the collision the ball bounces back and moves horizontally to the left at a speed of 14.4 m/s. If the collision lasts for 0.0015 s, what is the magnitude of the (average) force exerted on the ball by the wall?
A .060kg tennis ball, moving with a speed of 4.5m/s has a head-on collision with a...
A .060kg tennis ball, moving with a speed of 4.5m/s has a head-on collision with a .090kg clay ball initially moving in the same direction at a speed of 3.9 m/s. Assuming perfect elastic collision, determine the speed and direction of the tennis ball
A tennis player serves a ball horizontally from the service line at a height of 2.50...
A tennis player serves a ball horizontally from the service line at a height of 2.50 m. a. What is the minimum speed required for the ball to clear the net? The net is 0.90 m tall and the distance from the net to the service line is 15.0 m. b. Where will the ball land if it does just clear the net? c. By how much will the ball clear the net if it is served horizontally and lands...
A .06 kg tennis ball, moving at 2.50 m/s collides with a .09 kg ball moving...
A .06 kg tennis ball, moving at 2.50 m/s collides with a .09 kg ball moving away from it at 1.15 m/s. Assuming a perfectly elastic collision, what are the speeds and directions of the balls after the collision? Please explain each step or why you do what you do!
A tennis player receives a shot with the ball (0.0600 kg) traveling horizontally at 50.4 m/s...
A tennis player receives a shot with the ball (0.0600 kg) traveling horizontally at 50.4 m/s and returns the shot with the ball traveling horizontally at 39.6 m/s in the opposite direction. (Take the direction of the ball's final velocity (toward the net) to be the +x-direction.) (a) What is the impulse delivered to the ball by the racket? magnitude N · s direction +x Correct: Your answer is correct. (b) What work does the racket do on the ball?...
A tennis player receives a shot with the ball (0.0600 kg) traveling horizontally at 60.0 m/s...
A tennis player receives a shot with the ball (0.0600 kg) traveling horizontally at 60.0 m/s and returns the shot with the ball traveling horizontally at 34.0 m/s in the opposite direction. (Take the direction of the ball's final velocity (toward the net) to be the +x-direction.) (a) What is the impulse delivered to the ball by the racket? magnitude      N · s direction     ---Select--- +x −x (b) What work does the racket do on the ball? (Indicate the direction...
A 0.060 kg tennis ball, moving with a speed of 7.10 m/s has a head-on collision...
A 0.060 kg tennis ball, moving with a speed of 7.10 m/s has a head-on collision with a 0.080 kg ball initially moving away from it in the same direction at a speed of 3.40 m/s. Assuming a perfectly elastic collision, What is the velocity of the tennis ball after the collision? (Take the initial direction of the balls as positive.) m/s What is the velocity of the 0.080 kg ball after the collision? m/s