Question

how do i find the electric field strength and the voltage of a spherical dielectric with...

how do i find the electric field strength and the voltage of a spherical dielectric with radius 5m (R=5m) and a total charge of 20 micro Coulombs at the surface, center, 3m from center, and 7m from the center

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
find the electric field and voltage of a conducting sphere (R = 5m) charged with a...
find the electric field and voltage of a conducting sphere (R = 5m) charged with a 20 micro Coulomb charge at a distance of R = 4m and R = 6m
The dielectric strength of air, E = 3.0×106 V/m, is the maximum field that air can...
The dielectric strength of air, E = 3.0×106 V/m, is the maximum field that air can withstand before it breaks down and becomes conducting. Part A) How much charge can be placed on a spherical conductor with a 15.0- cm radius before the field at its surface exceeds the breakdown strength of the air? Part B) What would be the electric potential at the surface of this conductor?
A spherical dielectric shell has inner radius r1, outer radius r2, and dielectric constant k. A...
A spherical dielectric shell has inner radius r1, outer radius r2, and dielectric constant k. A charge Q is placed at the center of the sphere. (a) Determine the polarization P in the dielectric shell. (b) Find the bound volume charge density, ρb, inside the dielectric shell. (c) Find the bound surface charge density, σb, at r = r1 and r = r2.
Three spherical surfaces located at r= 2m, 4m and 6m have uniform surface charge densities of...
Three spherical surfaces located at r= 2m, 4m and 6m have uniform surface charge densities of 20 ??/?2, -4 ??/?2 and ??0 , respectively, a) Find the electrical flux density D at r=1m, 3m and 5m. b) Determine ??0 such that D=0 at r=7m
If the electric field inside a capacitor exceeds the dielectric strength of the dielectric between its...
If the electric field inside a capacitor exceeds the dielectric strength of the dielectric between its plates, the dielectric will break down, discharging and ruining the capacitor. Thus, the dielectric strength is at the maximum magnitude that the electric field can have without breakdown occurring. The dielectric strength of air is 3.0x106 V/m and that of neoprene rubber is 1.2x107 V/m. A certain air gap parallel plate capacitor can store no more than 0.075 J of electrical energy before breaking...
5. PROBLEM: GUASS'S LAW I Use Guass's law to obtain the electric field for each of...
5. PROBLEM: GUASS'S LAW I Use Guass's law to obtain the electric field for each of the following: a) A point charge q. b) An insulatin sphere of radius R and charge Q distributed uniformly throughout the volume. Here you want to find the electric field both inside and outside the sphere. Sketch the field strength as a function of distance from the center of the sphere.
Electric Field of a Charged Sphere with a small hole on the surface. Consider a spherical...
Electric Field of a Charged Sphere with a small hole on the surface. Consider a spherical shell of radius R centered on the origin of coordinates. The sphere is uniformly charged, with total charge Q, except for the region where theta <= 1.00?. Consider field point on the positive z-axis. Determine E as a function of z.
An expression for the electric field that was produced by a spherically symmetric distribution is 4.04×103r2...
An expression for the electric field that was produced by a spherically symmetric distribution is 4.04×103r2 [^(r)] N/C. A 37.0 cm diameter spherical surface shares its center with the spherical electric field. What is the flux through this spherical surface? What is the charge inside the spherical surface?
A) A 1 nano Coulomb spherical charge has a radius of 10 centimeters. The charge is...
A) A 1 nano Coulomb spherical charge has a radius of 10 centimeters. The charge is uniformly distributed throughout the volume of the sphere.   Find the electric flux through a spherical gaussian surface centered on the charge with a radius of 1 meter. Answer in units of (N*m^2)/C. B) Same as part A, but let the Gaussian surface be a 1 meter cube centered on the charge. C) What is the strength of the E field on the surface of...
Suppose a conducting sphere, radius r2, has a spherical cavity of radius r1 centered at the...
Suppose a conducting sphere, radius r2, has a spherical cavity of radius r1 centered at the sphere's center. At the center of the sphere is a point charge -4Q. Assuming the conducting sphere has a net charge +Q determine the electric field,magnitude and direction, in the following situations: a) From r = 0 to r = r1. b) From r = r1 to r = r2. c) Outside of r = r2 d) find the surface charge density (charge per...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT