Question

It takes 2.47 ms for the current in an LRLR circuit to increase from zero to...

It takes 2.47 ms for the current in an LRLR circuit to increase from zero to 0.79 its maximum value.

Part A:

Determine the time constant of the circuit.

Part B:

Determine the resistance of the circuit if 35.0 mH .

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
It takes 2.25 ms for the current in an LR circuit to increase from zero to...
It takes 2.25 ms for the current in an LR circuit to increase from zero to 0.66 its maximum value. Part A Determine the time constant of the circuit. Express your answer to two significant figures and include the appropriate units. Part B Determine the resistance of the circuit if 35.0 mH . Express your answer to two significant figures and include the appropriate units.
An L-C circuit containing an 88.0-mH inductor and a 1.70-nF capacitor oscillates with a maximum current...
An L-C circuit containing an 88.0-mH inductor and a 1.70-nF capacitor oscillates with a maximum current of 0.800 A Calculate the maximum charge on the capacitor. Calculate the oscillation frequency of the circuit Assuming the capacitor had its maximum charge at time t= 0, calculate the energy stored in the inductor after 2.60 ms of oscillation.
During a 72-ms interval, a change in the current in a primary coil occurs. This change...
During a 72-ms interval, a change in the current in a primary coil occurs. This change leads to the appearance of a 6.1-mA current in a nearby secondary coil. The secondary coil is part of a circuit in which the resistance is 12 Ω. The mutual inductance between the two coils is 3.2 mH. What is the change in the primary current?
An RL circuit with L = 23 mH has an emf of 12 V applied to...
An RL circuit with L = 23 mH has an emf of 12 V applied to it starting at time t = 0. When t = 0.19 ms, the rate of change of current in the circuit is 263 A/s. Determine the resistance. Express your answer in ohms.
QUESTION 6 1. The time constant in an RC circuit is the time it takes a....
QUESTION 6 1. The time constant in an RC circuit is the time it takes a. so that the current reaches its maximum value b. so that the capacitor is fully charged. C. in which the current decreased 37% of its initial value. d. so that the current drops to zero. QUESTION 7 1. A charged particle is fired at a speed of 5.2x10 ^ 4 m / s at an angle of 35 degrees to a magnetic field of...
A series RL circuit consists of a 6.3 volt battery, a 175 ohm resistor and an...
A series RL circuit consists of a 6.3 volt battery, a 175 ohm resistor and an inductor. (a) If the battery has been connected for a long time interval, what is the current in the circuit? (b) The battery is then removed from the circuit, so only the resistor and the inductor are connected in series. What is the inductance of the inductor if the current drops to half of its peak value in 2.00 ms? (c) The current is...
Consider an LR circuit like that displayed in Figure 6.6 in Activity 2-1 in your lab...
Consider an LR circuit like that displayed in Figure 6.6 in Activity 2-1 in your lab manual. You measure the current through the inductor as a function of time, and find that the the current eventually levels off to be 55.05 mA. The voltage of the battery is 6V as displayed. a) What is the total resistance of the circuit? b) If the circuit takes 7.52 ms to reach 34.80 mA, what is the value of L for the inductor?
1.The resonant frequency of an RCL circuit is 3.0 kHz, and the value of the inductance...
1.The resonant frequency of an RCL circuit is 3.0 kHz, and the value of the inductance is 5.0 mH. What is the resonant frequency (in kHz) when the value of the inductance is 1.5 mH? 2. Part a of the drawing shows a resistor and a charged capacitor wired in series. When the switch is closed, the capacitor discharges as charge moves from one plate to the other. Part b shows the amount q of charge remaining on each plate...
A 62.5 m length of insulated copper wire is wound to form a solenoid of radius...
A 62.5 m length of insulated copper wire is wound to form a solenoid of radius 1.7 cm. The copper wire has a radius of 0.49 mm. (Assume the resistivity of copper is ? = 1.7 ? 10?8 ? · m.) (a) What is the resistance of the wire? ? (b) Treating each turn of the solenoid as a circle, how many turns can be made with the wire? turns (c) How long is the resulting solenoid? m (d) What...
An L-C circuit consists of a 69.5-mH inductor and a 240-µF capacitor. The initial charge on...
An L-C circuit consists of a 69.5-mH inductor and a 240-µF capacitor. The initial charge on the capacitor is 5.95 µC, and the initial current in the inductor is zero. (a) What is the maximum voltage across the capacitor? __________ V (b) What is the maximum current in the inductor? __________ A (c) What is the maximum energy stored in the inductor? __________ J (d) When the current in the inductor has half its maximum value, what is the charge...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT