Question

A two-slit interference experiment is set up and the fringes are displayed on a screen. Then...

A two-slit interference experiment is set up and the fringes are displayed on a screen. Then the whole apparatus is immersed in the nearest swimming pool. How does the fringe pattern change?

a.

The maxima are farther apart due to the resulting decrease in the wavelength of light.

b.

The maxima are closer together due to the resulting decrease in the wavelength of light.

c.

The fringe pattern remains the same regardless of the medium.

d.

The maxima are farther apart due to the resulting increase in the wavelength of light.

A quantity of ideal gas expands at constant pressure of 4.00 x 10^4 Pa. Its volume changes from 2.00 x 10^-3 m^3 to 8.00 x 10^-3 m^3. What is the change in the internal energy of the gas?

a.

not enough information

b.

0.0000 J

c.

-400.0000 J

d.

-240.0000 J

Homework Answers

Answer #1


1) b.The maxima are closer together due to the resulting decrease in the wavelength of light.

because,
distance between two adjacent maxima in air = lamda*R/d
where, lamda --> wavelegnth
d --> slit separation
R --> distance between slits ann screen

distance between two adjacent maxima in water = (lamda*R/d)/n

for water, n = 1.33

so, in water The maxima are closer together due to the resulting decrease in the wavelength of light.

2) The answer is not listed.

change in internal energy = (3/2)*n*R*(T2 - T1)

= (3/2)*P*(V2 - V1) (since P*V = n*R*T)

= (3/2)*4*10^4*(8*10^-3 - 2*10^-3)

= 360 J

Please check your options. The answer must be 360 J

please comment for any further clarification.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Blue light falling on a double-slit produces interference fringes on a screen. What will happen to...
Blue light falling on a double-slit produces interference fringes on a screen. What will happen to the fringes (closer together, farther apart, remain the same, or no more fringes) if The blue light is replaced by red light? The blue light is replaced by incoherent light? The separation between the slits is decreased? The distance to the screen is decreased? The entire experiment is immersed in water?
A double slit interference experiment shows fringes on a screen. If this entire experiment were interested...
A double slit interference experiment shows fringes on a screen. If this entire experiment were interested in water then would the fringes get closer together, farther apart, stay the same, or disappear altogether? Explain your reasoning. Antireflection coatings for glass usually have an index of refraction that is less than that of glass. Explain why this would give a thinner coat?
In a double-slit experiment, if the slit separation is increased, how will the interference pattern on...
In a double-slit experiment, if the slit separation is increased, how will the interference pattern on the screen change? If instead, you increase the distance between the slit and the screen, how will the interference pattern change? (i.e. the maxima and minima stay in the same position, get further apart, get closer together, etc.)
A double-slit experiment produces an interference pattern on a screen 2.8 m away from slits. Light...
A double-slit experiment produces an interference pattern on a screen 2.8 m away from slits. Light of wavelength λ= 460 nm  falls on the slits from a distant source. The distance between adjacent bright fringes is 6.2 mm. A) Find the distance between the two slits B) Determine the distance to the 6th order dark fringe from the central fringe
A double slit experiment produces an interference pattern on a screen 2.8 m away from the...
A double slit experiment produces an interference pattern on a screen 2.8 m away from the slits. Light of wavelength = 480 nm falls on the slits from a distant source. The distance between adjacent bright fringes is 5.8 mm. a) find the distance between the two slits. Express your answer using 3 significant figures. b) determine the distance to the 6th order dark fringe from the central fringe. Express your answer using three significant figures.
A double slit interference pattern is created by two narrow slit spaced 0.025 mm apart on...
A double slit interference pattern is created by two narrow slit spaced 0.025 mm apart on a screen 2 m away from the slits. a. If the seventh bright fringe on the detector is 10 cm away from the central fringe, what is the wavelength of light (in nm) used in this experiment? b. What is the angle of the diffraction order?
A double-slit set up produces bright fringes for sodium light ( = 589 nm) such that...
A double-slit set up produces bright fringes for sodium light ( = 589 nm) such that the first bright fringe is at an angle of 0.20°. (a) What is the slit separation? (b) Suppose the two slits, the screen, and intervening space are immersed in water, but the source of the sodium light stays outside the water. What will be the wavelength of the sodium light once it enters the water? (c) What is the location of the first bright...
Which of the following make the separation between fringes greater in the two slit interference experiment?...
Which of the following make the separation between fringes greater in the two slit interference experiment? (Select all that apply.) Wider slits.Smaller separation of the two slits.Larger separation of the two slits.Narrower slits. PRACTICE IT Use the worked example above to help you solve this problem. A screen is separated from a double-slit source by 1.22 m. The distance between the two slits is 0.0292 mm. The second-order bright fringe (m = 2) is measured to be 4.60 cm from...
Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits...
Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits are separated by 8 mm, and the interference pattern is projected onto a screen 7 m away from the slits. The central bright fringe is at a certain spot on the screen. Using a ruler with one end placed at the central fringe, you move along the ruler passing by two more bright fringes and find that the next bright fringe is 23.5 mm...
A double-slit experiment produces an interference pattern on a screen 2.8 m m away from slits....
A double-slit experiment produces an interference pattern on a screen 2.8 m m away from slits. Light of wavelength λ= 520 nm n m  falls on the slits from a distant source. The distance between adjacent bright fringes is 7.2 mm m m . Part A Find the distance between the two slits. Express your answer using three significant figures. Part B Determine the distance to the 5th order dark fringe from the central fringe. Express your answer using...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT