Question

1-The velocity of a particle is v = { 6 i + ( 28 - 2...

1-The velocity of a particle is v = { 6 i + ( 28 - 2 t ) j } m/s, where t is in seconds. If r=0 when t=0, determine particle displacement during time interval t = 3 s to t = 8 s in the y direction.

2-A particle, originally at rest and located at point (1 ft, 4 ft, 5 ft), is subjected to an acceleration of a={ 3 t i + 17 t2k} ft/s. Determine magnitude of the particle’s position at t = 1 s.

3-The velocity of a particle is given by v = { 14t2 i + 3t3j + (8t+4) k } m/s, where t is in seconds. If the particle is at the origin when t=0s, determine magnitude of particle’s acceleration when t=7s.

4-A rocket is fired from rest at x=0 and travels along a parabolic trajectory described by y2 = { 180 (103) x } m. If the x component of acceleration is ax = t2/7, where t is in seconds, determine the magnitude of the rocket’s velocity when t = 5 s.

please help

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Practice Derivatives and integrals. A particle’s velocity is described by the function v = ( t^2...
Practice Derivatives and integrals. A particle’s velocity is described by the function v = ( t^2 – 7t + 10) m/s, where t is in s. a) Graph the velocity function for t in the interval 0s-6s. b) At what times does the particle reach its turning points? c) Find and graph the position function x (t). d) Find and graph the acceleration function a(t). e) What is the particle’s acceleration at each of the turning points?
A particle travels along the path defined by the parabola y=0.2x^2. If the component of velocity...
A particle travels along the path defined by the parabola y=0.2x^2. If the component of velocity along t he x axis is Vx=(2.9t)ft/s, where t is in seconds. determine the magnitude of the particle's acceleration when t = 1s. when t = 0 , x =0 and y = 0.
) A particle is moving according to the velocity equation v(t) = 9t^2-8t-2 . The equation...
) A particle is moving according to the velocity equation v(t) = 9t^2-8t-2 . The equation uses units of meters and seconds appropriately. At t = 1 s the particle is located at x = 2 m. (a) What is the particle's position at t = 2 s? (b) What is the particle's acceleration at t = 1 s? (c) What is the particle's average velocity from t = 2 s to t = 3 s?
The velocity of a particle is v = { 5 i + ( 6 – 2t...
The velocity of a particle is v = { 5 i + ( 6 – 2t ) j } m/sec , where ‘ t ‘ is in secs. r = 0, When t = 0 , determine the displacement of the particle during the time interval t = 1 secs to t = 3secs .
The x and y components of the velocity of a particle are Vx=(2t + 4)ft/s &...
The x and y components of the velocity of a particle are Vx=(2t + 4)ft/s & Vy=(8/y)ft/s. Initially, the particle if found at coordinates x=1 and y=0. Determine the position, magnitude of velocity, and magnitude of the acceleration of the particle when t = 2s
A particle has a constant acceleration of a = axi + ayj and at t =...
A particle has a constant acceleration of a = axi + ayj and at t = 0 it is at rest at the origin What is the particle’s position as a function of time? What is the particle’s velocity as a function of time? What is the particle’s path, expressed as y as a function of x? The position of a particle is given by r = (at2)i + (bt3)j + (ct-2)k, where a, b, and c are constants. What...
The components ? and ? of the velocity of a particle are: ?? = (2 ?...
The components ? and ? of the velocity of a particle are: ?? = (2 ? + 4) f / s ?? = (8 ⁄ ?) f / s (feet/sec) Initially the particle is in the coordinates ? = 1 and ? = 0. Determine the position, magnitude of velocity, and magnitude of acceleration of the particle when t = 2 s.
A particle travels along a straight line with a velocity v=(12−3t^2) m/s , where t is...
A particle travels along a straight line with a velocity v=(12−3t^2) m/s , where t is in seconds. When t = 1 s, the particle is located 10 m to the left of the origin. Determine the displacement from t = 0 to t = 7 s. Determine the distance the particle travels during the time period given in previous part.
The velocity v of a particle moving in the xy plane is given by v =...
The velocity v of a particle moving in the xy plane is given by v = (7.0t -4.0t2 )i + 7.5j, in m/s. Here v is in m/s and t (for positive time) is in s. What is the acceleration when t = 3.0 s? i-component of acceleration? j-component of acceleration? When (if ever) is the acceleration zero (enter time in s or 'never')? When (if ever) is the velocity zero (enter time in s or 'never')?
A particle moves according to a law of motion s = f(t), t ≥ 0, where...
A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = t3 − 9t2 + 15t (a) Find the velocity at time t. v(t) =      (b) What is the velocity after 4 s? v(4) =  ft/s (c) When is the particle at rest? t =  s (smaller value) t =  s (larger value) (d) When is the particle moving in the positive direction? (Enter your answer...