Question

An electron is confined to a region of size 0.15 nm. Has a ground state energy...

An electron is confined to a region of size 0.15 nm. Has a ground state energy of 16.62eV.

(a) (4 pts) When the electron is in the 5th excited state, at how many places inside the region is the probability for finding the electron zero? (b) (4 pts) Assume that the electron is in the ground state. What is the probability for finding the particle in the middle 25% of the region? (c) (2 pts) If the potential walls were not infinitely high, how would that affect the energy of the ground state? Explain.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. An electron is confined to a region of size 0.15 nm (i.e., infinite potential walls...
1. An electron is confined to a region of size 0.15 nm (i.e., infinite potential walls at either end). (a) (5 pts) What is the ground state energy in eV? (b) (5 pts) The electron falls from the 5th excited state to the 3rd excited state, emitting a photon in the process. What is the wavelength of the photon in nm? 2. Refer to the previous problem. (a) (4 pts) When the electron is in the 5th excited state, at...
An electron is confined to a box the size of a small atom, 0.15 nm across....
An electron is confined to a box the size of a small atom, 0.15 nm across. Part A: What's the uncertainty in the electron's momentum? Answer: 3.5x10^-25 kg*m/s Part B: Suppose the momentum is just equal to the minimum uncertainty value you computed in part A. What's the electron's energy? Answer: K= 6.8x10^-20 J Part C: (This is the part Im struggling with) What wavelength photon would have the same energy?
An infinitely deep square well has width L = 2.5 nm. The potential energy is V...
An infinitely deep square well has width L = 2.5 nm. The potential energy is V = 0 eV inside the well (i.e., for 0 ≤ x ≤ L). Seven electrons are trapped in the well. 1) What is the ground state (lowest) energy of this seven electron system in eV? Eground = 2) What is the energy of the first excited state of the system in eV? NOTE: The first excited state is the one that has the lowest...
Consider an electron confined in a box of size d=1nm. Find the momentum and energy of...
Consider an electron confined in a box of size d=1nm. Find the momentum and energy of the electron for the wave function ( also called state) with n=3 and n=7 Find the coordinates of the points of highest probability of finding the electron, if the electron is in the state with n=12. Explain why.
EMERGENCY Consider an electron confined in a box of size d=1nm. Find the momentum and energy...
EMERGENCY Consider an electron confined in a box of size d=1nm. Find the momentum and energy of the electron for the wave function ( also called state) with n=3 and n=7 Find the coordinates of the points of highest probability of finding the electron, if the electron is in the state with n=12. Explain why.
A particle is in the ground state of an infinite square well. The potential wall at...
A particle is in the ground state of an infinite square well. The potential wall at x = L suddenly (i.e., instantaneously) moves to x = 3L. such that the well is now three times its original size. (a) Let t = 0 be at the instant of the sudden change in the potential well. What is ψ(x, 0)? (b) If you measure the energy of the particle in the new well, what are the possible energies? (c) Estimate the...
The electron in a hydrogen atom falls from an excited energy level to the ground state...
The electron in a hydrogen atom falls from an excited energy level to the ground state in two steps, causing the emission of photons with wavelengths of 656.5 nm and 121.6 nm (So the in the first step the 656.5 nm photon is emitted and in the second step the 121.6 nm photon is emitted). What is the principal quantum number (ni) of the initial excited energy level from which the electron falls?
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm....
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm. What energy level does the electron reach? b) This excited atom then emits a photon of wavelength 1875.4 nm. What energy level does the electron fall to?
An electron is in an infinite one-dimensional square well of width L = 0.12 nm. 1)...
An electron is in an infinite one-dimensional square well of width L = 0.12 nm. 1) First, assume that the electron is in the lowest energy eigenstate of the well (the ground state). What is the energy of the electron in eV? E = 2) What is the wavelength that is associated with this eigenstate in nm? λ = 3) What is the probability that the electron is located within the region between x = 0.048 nm and x =...
A hydrogen atom in the ground state absorbs a photon of wavelength 95.0 nm. What energy...
A hydrogen atom in the ground state absorbs a photon of wavelength 95.0 nm. What energy level does the electron reach? This excited atom then emits a photon of wavelength 434.1 nm. What energy level does the electron fall to? -I know this question has already been asked on Chegg but each question I go to has different calculations and I can't get the right answer.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT