Question

A 4.7cm radius spherical conducting shell has a uniform surface charge density. What is the density...

A 4.7cm radius spherical conducting shell has a uniform surface charge density. What is the density if the electric field 1.5m from its center is 17N/C outward?

1.1 x 10-7 C/m2

6.1 x 10-7 C/m2

1.5 x 10-9 C/m2

1.5 x 10-7 C/m2

7.6 x 10-6 C/m2

Homework Answers

Answer #1

First we have to find the charge by the given electric field. Then the surface charge density is given by charge divided by surface area of sphere.

Please comment if you have any doubts.... Take care and stay safe...

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. A 30 cm radius hollow spherical conductive shell of has a surface charge density of...
1. A 30 cm radius hollow spherical conductive shell of has a surface charge density of 10 µC/m2, a point charge Q1 is in its center. Find the electric flux through the spherical surface centered at Q1: a. if the value is Q1= +3.5x10-6 C charge b. if the value is Q1= -2.5x10-6 C charge c. What would be the electric field in each case? Please explain how you got the answer, having trouble understanding this and can't seem to...
A Charged Spherical Shell and a Point Charge. A spherical conducting shell of radius 1.21 [m],...
A Charged Spherical Shell and a Point Charge. A spherical conducting shell of radius 1.21 [m], carries charge 4.10×10-6 [C], distributed uniformly over its surface. At the center of the shell there is a point charge 3.90×10-9 [C]. Let Pi and Po be points inside and outside the spherical shell, respectively. The distance of Pi from the point charge is 1.06 [m], whereas is Po is 5.27 [m] away from the point charge. Calculate the electrostatic potential at a Pi...
A surface charge density sigma(theta)=[sigma_o(cos(theta))] is glued to the surface of a spherical shell of radius...
A surface charge density sigma(theta)=[sigma_o(cos(theta))] is glued to the surface of a spherical shell of radius R. There is a vacuum with no charges both inside and outside of the shell. Calculate the electrostatic potential and the electric field both inside and outside the spherical shell. (the "_" is a subscript in sigma_o).
Two nonconducting spherical shells with uniform surface charge densities have their centers at a distance of...
Two nonconducting spherical shells with uniform surface charge densities have their centers at a distance of d = 115 cm apart. The smaller shell with radius 15.0 cm has a surface charge density of +4.9 µC/m2, while the larger shell with radius 32.0 cm has a surface charge density of +13.0 µC/m2.Determine the net electric field vector at y1 = −93.0 cm.
A 230 nC point charge is placed at the center of an uncharged spherical conducting shell...
A 230 nC point charge is placed at the center of an uncharged spherical conducting shell 28 cm in radius. a) What is the surface charge density on the outer surface of the shell? Express your answer using two significant figures. b) What is the electric field strength at the shell's outer surface? Express your answer using two significant figures.
A point charge q = −4.0 ✕ 10−12 C is placed at the center of a...
A point charge q = −4.0 ✕ 10−12 C is placed at the center of a spherical conducting shell of inner radius 3.4 cm and outer radius 3.9 cm. The electric field just above the surface of the conductor is directed radially outward and has magnitude 7.5 N/C. a) What is the charge density (in C/m2) on the inner surface of the shell? b) What is the charge density (in C/m2) on the outer surface of the shell? c) What...
A surface charge density sigma(theta)=[sigma_o(cos(theta))] is glued to the surface of a spherical shell of radius...
A surface charge density sigma(theta)=[sigma_o(cos(theta))] is glued to the surface of a spherical shell of radius R. There is a vacuum with no charges both inside and outside of the shell. Calculate the electrostatic potential and electric field both inside and outside of the spherical shell. Side note: sigma_o is sigma subscript o.
The Van de Graaff generator has a spherical thin conducting shell with a radius of 15....
The Van de Graaff generator has a spherical thin conducting shell with a radius of 15. cm and a surface charge density 2.1 x 10-3 μC/cm2 . a. Determine the total charge on the surface of the Van de Graaff [6.02 μC] b. Use Gauss's Law to determine the magnitude and direction of the electric field inside the dome at a distance 6. cm from the center. Sketch and label the electric field, Gaussian surface, etc. You must use Gauss's...
A small conducting spherical shell with inner radius a and outer radius b is concentric with...
A small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d. The inner shell has a total charge of -1q and the outer shell has a total charge of +3q. Select True or False for the following statements. True False The radial component of the electric field in the region r > dis given by +2q/(4πε0r2). True False The total charge on...
A conducting spherical shell of inner radius and outer radius has a charge Q on it....
A conducting spherical shell of inner radius and outer radius has a charge Q on it. The flux through a concentric spherical surface of radius is . An additional charge, also Q, is then added to the sphere. What is the change in flux through a concentric spherical surface of radius when the additional charge is placed on the conducting shell?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT