Question

Explain how the magnitude and direction of frequency shift in the sound from a moving object...

Explain how the magnitude and direction of frequency shift in the sound from a moving object indicate its direction and speed.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
We know from experience that the Doppler shift of sound from a moving car is easily...
We know from experience that the Doppler shift of sound from a moving car is easily detectable. Assuming light with a frequency of 9×1014 Hz, calculate the Doppler shift (the difference of the observed and emitted frequencies) for light from a car moving toward you at a speed of 220 m/s.
We know from experience that the Doppler shift of sound from a moving car is easily...
We know from experience that the Doppler shift of sound from a moving car is easily detectable. Assuming light with a frequency of 9×1014 Hz, calculate the Doppler shift (the difference of the observed and emitted frequencies) for light from a car moving toward you at a speed of 220 m/s.
The frequency of a sound source is shifted to higher magnitude when 1.the sound source is...
The frequency of a sound source is shifted to higher magnitude when 1.the sound source is moving in a circular path around the listener. 2.the sound source is stationary and the listener is moving away from it. 3.the sound source is moving toward a stationary listener. 4.the sound source is moving away from a stationary listener
A submarine sends a sound wave of frequency 3000Hz while moving away from a whale at...
A submarine sends a sound wave of frequency 3000Hz while moving away from a whale at 25 m/s. The whale hears the sound while chasing the submarine at 30 m/s. The speed of sound in the water is 1,500 m/s a) Find the frequency of the sound heard by the whale. ANS_________________________________________________ b) The whale passed the submarine and is moving away from it at 20 m/s. The submarine chases the whale at 10 m/s and sends a sound wave...
The frequency will sound different if we hear a sound source moving relative to us. This...
The frequency will sound different if we hear a sound source moving relative to us. This phenomenon is called the Doppler Effect in Physics. An ambulance sounds a siren at 1515 Hz and passes a cyclist moving at 2.12 m / s. After the ambulance passed, the cyclist heard a siren sound at a frequency of 1501 Hz. The speed of sound in the air is about 343 m / s. What is the speed (speed) of the ambulance in...
a 30 kg object is moving through space in the +x direction with a speed of...
a 30 kg object is moving through space in the +x direction with a speed of 20 m/s when, due to an internal explosion, it breaks into three parts. A 15kg parrt moves away from the explosion with a speed of 10 m/s in the +y direction, a 6kg part moves in the -x direction with a speed of 5m/s. what is the magnitude of the velocity of the remaining part?
A moving source emits a sound of frequency 600.0-Hz. A stationary listener detects a frequency of...
A moving source emits a sound of frequency 600.0-Hz. A stationary listener detects a frequency of 640.0-Hz. The ambient temperature is 33.0°C. Determine a) the speed of sound at the ambient temperature of 33.0°C. b) the speed of the moving source for the given source and detected frequencies.
The sound from the whistle of a truck is 2500 Hz. The truck is moving at...
The sound from the whistle of a truck is 2500 Hz. The truck is moving at 30.0 m/s toward a building, which reflects the sound and is heard by the driver of the truck. As heard by the driver of the truck, how much does the frequency change from the original frequency of the whistle? The speed of sound is 340 m/s.
A car horn produces a sound with a frequency of 408 Hz. The horn is sounded...
A car horn produces a sound with a frequency of 408 Hz. The horn is sounded while the car is moving down the street in the same direction as a bicycle which is ahead of the car. The bicyclist is moving down the street with 1/5.46 the speed of the car and hears a frequency of 436 Hertz. Determine the speed of the car (in m/s). The speed of the sound is 345 m/s.
Can an object with zero net force acting on it be moving? Explain. Discuss how an...
Can an object with zero net force acting on it be moving? Explain. Discuss how an object’s acceleration relates to the direction of its movement.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT