Question

Water is flowing through a tube. The water speed is 6.30 m/s at point 1. Point...

Water is flowing through a tube. The water speed is 6.30 m/s at point 1. Point 2 is 7.1 m higher than point 1. The diameter of the pipe is 0.40 m at point 1 and 0.20 m at point 2. What is the pressure difference P1-P2 between points 1 and 2? (ρ(H2O)=1000 kg/m3)

Homework Answers

Answer #1

Hi friend if you have any doubts leave a comment.. THANKS

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Water is flowing at the rate of 1.676 m/s in a 3.068 inches’ diameter horizontal pipe...
Water is flowing at the rate of 1.676 m/s in a 3.068 inches’ diameter horizontal pipe at a pressure p1 of 68.9 kPa. It then passes to a pipe having an inside diameter of 2.067 inch. The density of the water is 998 kg/m3 . a) Calculate the new pressure p2 in the 2.067inch pipe. Assume no friction losses b) If the piping is vertical and the flow is upward, calculate the new pressure p2. The pressure tap for p2...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is P1 = 1.80  104 Pa, and the pipe diameter is 8.0 cm. At another point y = 0.20 m higher, the pressure is P2 = 1.15  104 Pa and the pipe diameter is 4.00 cm. (a) Find the speed of flow in the lower section. m/s (b) Find the speed of flow in the upper section. m/s (c) Find the...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is P1= 2.00  104 Pa, and the pipe diameter is 5.0 cm. At another point y = 0.40 m higher, the pressure is P2 = 1.25  104 Pa and the pipe diameter is 2.50 cm. A) find the speed of flow in the lower section in m/s B) find the speed of flow in the upper section in m/s C) Find...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is P1 = 1.70 104 Pa, and the pipe diameter is 4.0 cm. At another point y = 0.30 m higher, the pressure is P2 = 1.30 104 Pa and the pipe diameter is 2.00 cm. (a) Find the speed of flow in the lower section. =m/s b) Find the speed of flow in the upper section. =m/s (c)...
Water, with a density of ?=1185 kg/m3 , flows in a horizontal pipe. In one segment...
Water, with a density of ?=1185 kg/m3 , flows in a horizontal pipe. In one segment of the pipe, the flow speed is ?1=7.13 m/s . In a second segment, the flow speed is ?2=1.57 m/s . What is the difference between the pressure in the second segment ( ?2 ) and the pressure in the first segment ( ?1 )? P2-P1 = A liquid of density 1110 kg/m3 flows steadily through a pipe of varying diameter and height. At...
A Venturi tube may be used as a fluid flow meter. If the fluid flow rate...
A Venturi tube may be used as a fluid flow meter. If the fluid flow rate in m3/s is 2.2 * 10-3 and the radius R1 = 2.4 *10-2 m of the inlet tube is 2.1 times the radius R2 of the outlet tube, and the fluid is water (ρ = 1000 kg/m3). Find the pressure difference P1 - P2 in units of kPa.
Water, with a density of ρ = 1155 kg/m3, flows in a horizontal pipe. In one...
Water, with a density of ρ = 1155 kg/m3, flows in a horizontal pipe. In one segment of the pipe the flow speed is v1 = 7.73 m/s. In a second segment the flow speed is v2 = 1.57 m/s. What is the difference between the pressure in the second segment (P2) and the pressure in the first segment (P1) ?
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is P1 = 1.70  104 Pa, and the pipe diameter is 4.0 cm. At another point y = 0.30 m higher, the pressure is P2 = 1.25  104 Pa and the pipe diameter is 2.00 cm. (a) Find the speed of flow in the lower section. (b) Find the speed of flow in the upper section. (c) Find the volume flow...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is 1.65 ✕ 105 Pa and the pipe radius is 2.80 cm. At the higher point located at y = 2.50 m, the pressure is 1.27 ✕ 105 Pa and the pipe radius is 1.30 cm. (a) Find the speed of flow in the lower section. m/s (b) Find the speed of flow in the upper section. m/s (c)...
The pressure of water flowing through a 5.9×10^-2 m-radius pipe at a speed of 1.2 m/s...
The pressure of water flowing through a 5.9×10^-2 m-radius pipe at a speed of 1.2 m/s is 2.2×10^5 N/m^2. a) What is the flow rate of the water? b) What is the pressure in the water after it goes up a 5.8 m-high hill and flows in a 4.2×10^-2 m-radius pipe?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT