Question

A uniform rod of length 50. cm and mass 0.20 kg is placed on a fulcrum...

A uniform rod of length 50. cm and mass 0.20 kg is placed on a fulcrum at a distance of 40. cm from the left end of the rod. At what distance from the right end of the rod should a 0.60 kg mass be hung to balance the rod?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A uniform, 254-N rod that is 1.89 m long carries a 225-N weight at its right...
A uniform, 254-N rod that is 1.89 m long carries a 225-N weight at its right end and an unknown weight W toward the left end (see the figure (Figure 1)). When W is placed 42.0 cm from the left end of the rod, the system just balances horizontally when the fulcrum is located 69.2 cm from the right end. A) Find W. B) If W is now moved 29.3 cm to the right, how far must the fulcrum be...
A uniform, 245-N rod that is 2.10 m long carries a 225-N weight at its right...
A uniform, 245-N rod that is 2.10 m long carries a 225-N weight at its right end and an unknown weight W toward the left end (see the figure (Figure 1)). When W is placed 46.0 cm from the left end of the rod, the system just balances horizontally when the fulcrum is located 69.2 cm from the right end. W= 71.7 N If W is now moved 28.1 cm to the right, how far must the fulcrum be moved...
A 50 gram meterstick is placed on a fulcrum at its 50 cm mark. A 20...
A 50 gram meterstick is placed on a fulcrum at its 50 cm mark. A 20 gram mass is attached at the 12 cm mark. Where should a 40 gram mass be attached so that the meterstick will be balanced in rotational equilibrium?
A thin, rigid, uniform rod has a mass of 1.40 kg and a length of 2.50...
A thin, rigid, uniform rod has a mass of 1.40 kg and a length of 2.50 m. (a) Find the moment of inertia of the rod relative to an axis that is perpendicular to the rod at one end. (b) Suppose all the mass of the rod were located at a single point. Determine the perpendicular distance of this point from the axis in part (a), such that this point particle has the same moment of inertia as the rod...
A uniform bar with a length of 8m and a mass of 40 kg is attached...
A uniform bar with a length of 8m and a mass of 40 kg is attached to a building by it's axis at its left end. A box of mass 30 kg sits on the bar at a distance of 2.5m from the left end.the right end of the bar is supported by a cable that is also attached to the building. The angle between the cable and the bar is 45 degrees. Determine the tension in the cable.
The uniform thin rod in the figure below has mass M = 2.00 kg and length...
The uniform thin rod in the figure below has mass M = 2.00 kg and length L = 2.87 m and is free to rotate on a frictionless pin. At the instant the rod is released from rest in the horizontal position, find the magnitude of the rod's angular acceleration, the tangential acceleration of the rod's center of mass, and the tangential acceleration of the rod's free end. HINT An illustration shows the horizontal initial position and vertical final position...
Uniform rod with length 6.6 m and mass 9.2 kg is rotating about an axis passing...
Uniform rod with length 6.6 m and mass 9.2 kg is rotating about an axis passing distance 4 m from one of its ends. The moment of inertia of the rod about this axis (in kg m2) is
A uniform rod of mass mr = 173 g and length L = 1... A uniform...
A uniform rod of mass mr = 173 g and length L = 1... A uniform rod of mass mr = 173 g and length L = 100.0 cm is attached to the wall with a pin as shown. Cords are attached to the rod at the r1 = 10.0 cm and r2 = 90.0 cm mark, passed over pulleys, and masses of m1 = 246 g and m2 = 127 g are attached. Your TA asks you to determine...
A uniform rod of mass M and length L is pivoted at one end. The rod...
A uniform rod of mass M and length L is pivoted at one end. The rod is left to freely rotate under the influence of its own weight. Find its angular acceleration α when it makes an angle 30° with the vertical axis. Solve for M=1 Kg, L=1 m, take g=10 m s-2. Hint: Find the center of mass for the rod, and calculate the torque, then apply Newton as τ= Ι·α 
A uniform rod AB of length 7.2 m and mass M = 3.8 kg is hinged...
A uniform rod AB of length 7.2 m and mass M = 3.8 kg is hinged at A and held in equilibrium by a light cord. A load W = 22 N hangs from the rod at a distance d so that the tension in the cord is 80 N . Part A) Determine the vertical force on the rod exerted by the hinge. Part B)Determine the horizontal force on the rod exerted by the hinge. Part C) Determine d...