Question

Air at 790kPa, 573oC and 8m/s enters an adiabatic nozzle at a rate of 1.95kg/s and...

Air at 790kPa, 573oC and 8m/s enters an adiabatic nozzle at a rate of 1.95kg/s and leaves at 101oC and 177kPa pressure. If the nozzle is placed horizontal hence the inlet and outlet are at the same height, determine the exit velocity of the air (m/s). Assume the cp air = 1.005kJ/kg.K.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.      Air enters a converging-diverging nozzle with a total pressure of 1100 kPa and a total...
1.      Air enters a converging-diverging nozzle with a total pressure of 1100 kPa and a total temperature of 127°C. The exit area to throat area ratio is 1.8. The throat area is 5 cm2. The velocity at the throat is sonic and the diverging section acts as a nozzle. The diverging section is now acts as a supersonic nozzle. Assume that a normal shock stands in the exit plane of the nozzle. Determine the following: a.       The static pressure and...
Question 1 Steam enters a nozzle at 300 kPa and 700ºC with a velocity of 20...
Question 1 Steam enters a nozzle at 300 kPa and 700ºC with a velocity of 20 m/s. The nozzle exit pressure is 200 kPa. Assuming this process is reversible and adiabatic, determine (a) the exit temperature and (b) the exit velocity.
Helium gas enters an adiabatic nozzle at 35 psia and 820 degrees R with an initial...
Helium gas enters an adiabatic nozzle at 35 psia and 820 degrees R with an initial velocity of 10 ft/s. The helium leaves the nozzle at 782 degrees R and 29 psia. (a) What is the velocity of the helium at the nozzle's exit? (ft/s) (b) What is the isentropic efficiency of the nozzle? (%) (c) What is the rate of entropy generation for this process? (Btu/lbm R)
Nitrogen gas at 60 kPa and 78C enters an adiabatic diffuser steadily with a velocity of...
Nitrogen gas at 60 kPa and 78C enters an adiabatic diffuser steadily with a velocity of 275 m/s and leaves at 85 kPa and 278C. Determine (a) the exit velocity of the nitrogen and (b) the ratio of the inlet to exit area A1/A2. Reconsider Using EES (or other) software, investigate the effect of the inlet veloc- ity on the exit velocity and the ratio of the inlet-to-exit area. Let the inlet velocity vary from 210 to 350 m/s. Plot...
1.      A converging-diverging nozzle is designed assuming steady isentropic flow. Air enters the nozzle at 427°C and...
1.      A converging-diverging nozzle is designed assuming steady isentropic flow. Air enters the nozzle at 427°C and 1000 kPa with negligible velocity. The exit Mach number is 2 and throat area is 20 cm2. Determine: a.      The throat velocity b.      The mass flow rate c.      The exit area 2.      The nozzle now has an exit area of 4 cm2. Air enters the nozzle with a total pressure of 1200 kPa, and a total temperature of 127oC. Determine the mass flow rate for back pressure of...
1.      A converging-diverging nozzle is designed assuming steady isentropic flow. Air enters the nozzle at 427°C and...
1.      A converging-diverging nozzle is designed assuming steady isentropic flow. Air enters the nozzle at 427°C and 1000 kPa with negligible velocity. The exit Mach number is 2 and throat area is 20 cm2. Determine: a.      The throat velocity b.      The mass flow rate c.      The exit area 2.      The nozzle now has an exit area of 4 cm2. Air enters the nozzle with a total pressure of 1200 kPa, and a total temperature of 127oC. Determine the mass flow rate for back pressure of...
A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a...
A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a propeller as well as the compressor. Air enters the diffuser with a volumetric flow rate of 63.7 m3/s at 40 kPa, 240 K, and a velocity of 180 m/s, and decelerates essentially to zero velocity. The compressor pressure ratio is 10 and the compressor has an isentropic efficiency of 85%. The turbine inlet temperature is 1240 K, and its isentropic efficiency is 85%. The...
Nitrogen gas at 50 kPa and 7°C enters an adiabatic diffuser steadily with a velocity of...
Nitrogen gas at 50 kPa and 7°C enters an adiabatic diffuser steadily with a velocity of 180 m/s and leaves at 109 kPa and 22°C. Determine (a) the exit velocity of the nitrogen and (b) the ratio of the inlet to exit area A1/A2
Steam enters a nozzle operating at a pressure of 30 [bar] and a temperature of 320...
Steam enters a nozzle operating at a pressure of 30 [bar] and a temperature of 320 [◦C] with negligible velocity. The steam exits the nozzle at a pressure of 15 [bar] and a velocity of 10 [m/s]. The mass flow rate is 2.5 [kg/s]. Assume the nozzle is well insulated. Determine the exit temperature of the steam.
In a horizontal pipe, water enters with a velocity of 2m / s when it is...
In a horizontal pipe, water enters with a velocity of 2m / s when it is subjected to a pressure at the inlet of 200 Pw (water pressure). Determine: a) The speed of the water (in m / s) at the outlet if an outlet pressure of 134 Pw is observed    b) If the area of ​​the tube at the inlet is 0.75m2, find the volumetric flow at the outlet. (in m3 / sec)