Question

A 771-g aluminum pot contains 520 g of water. Their temperature is 93.5 degree C. 260...

A 771-g aluminum pot contains 520 g of water. Their temperature is 93.5 degree C. 260 g of water at 1.87 degree C are added to the pot. Calculate the final temperature of the water and the aluminum after they reach thermal equilibrium. Assume no heat is exchanged with the surroundings. Express your answer in degree C.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A hot lump of 26.3 g of aluminum at an initial temperature of 67.2 °C is...
A hot lump of 26.3 g of aluminum at an initial temperature of 67.2 °C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the aluminum and water given that the specific heat of aluminum is 0.903 J/(g·°C)? Assume no heat is lost to surroundings.
A hot lump of 42.6 g of aluminum at an initial temperature of 62.2 °C is...
A hot lump of 42.6 g of aluminum at an initial temperature of 62.2 °C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the aluminum and water given that the specific heat of aluminum is 0.903 J/(g·°C)? Assume no heat is lost to surroundings. Please show all work
1.) How much cold water at 4.26 degree C must be added to 667 g of...
1.) How much cold water at 4.26 degree C must be added to 667 g of water at 45 degree C such that the final temperature of the mixture is 25.0 degree C? No heat is exchanged with the surroundings. Express your answer in grams. 2.) Calculate the amount of heat, in kJ, required to turn 511 g of ice at -15.30C into water at 250C.
An 100-g aluminum calorimeter contains 280 g of water at an equilibrium temperature of 20°C. A...
An 100-g aluminum calorimeter contains 280 g of water at an equilibrium temperature of 20°C. A 170-g piece of metal, initially at 277°C, is added to the calorimeter. The final temperature at equilibrium is 32°C. Assume there is no external heat exchange. The specific heats of aluminum and water are 910 J/kg·K and 4190 J/kg·K, respectively. The specific heat of the metal is closest to: a) 270 J/kg·K. b) 240 J/kg·K. c) 330 J/kg·K. d) 390 J/kg·K. e) 360 J/kg·K.
A 500-g aluminum container holds 300 g of water. The water and aluminum are initially at...
A 500-g aluminum container holds 300 g of water. The water and aluminum are initially at 40∘C. A 200-g iron block at 0∘C is added to the water. Assume the specific heat of iron is 450 J/kg⋅∘C, the specific heat of water 4180 J/kg⋅∘C and the specific heat of aluminum is 900 J/kg⋅∘C . 1Determine the final equilibrium temperature.    2.Determine the change in thermal energy of the aluminum 3.Determine the change in thermal energy of the water. 4. Determine...
An iron calorimeter of mass 153 g contains 260 g of water. The system is in...
An iron calorimeter of mass 153 g contains 260 g of water. The system is in thermal equilibrium at +10°C. We place two blocks of metal in the water: one is a 45 g piece of copper with an initial temperature of +61°C; the second piece has a mass of 75 g and is initially at +100°C. The combined system reaches a final equilibrium temperature of +41°C. Calculate the specific heat capacity of the unknown second piece of metal.
A copper pot with a mass of 0.495kg contains 0.715kg of water, and both are at...
A copper pot with a mass of 0.495kg contains 0.715kg of water, and both are at room temperature of 23.0 C. A 0.235kg block of iron at 86.5 C is dropped into the pot. Find the final temperature of the system, no heat loss to the surroundings. Express your answer in degrees Celsius.
A copper pot with a mass of 0.500 kg contains 0.175 kg of water, and both...
A copper pot with a mass of 0.500 kg contains 0.175 kg of water, and both are at a temperature of 23.0 ∘C. A 0.240 kg block of iron at 85.5 ∘C is dropped into the pot. Find the final temperature of the system, assuming no heat loss to the surroundings. Express your answer in degrees Celsius.
A copper pot with a mass of 0.500 kg contains 0.195 kg of water, and both...
A copper pot with a mass of 0.500 kg contains 0.195 kg of water, and both are at a temperature of 22.5 ∘C. A 0.245 kg block of iron at 85.0 ∘C is dropped into the pot. Find the final temperature of the system, assuming no heat loss to the surroundings. Express your answer in degrees Celsius.
A hot lump of 47.6 g of iron at an initial temperature of 50.8 °C is...
A hot lump of 47.6 g of iron at an initial temperature of 50.8 °C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the iron and water given that the specific heat of iron is 0.449 J/(g·°C)? Assume no heat is lost to surroundings.