Question

At t = 0, the instantaneous position of two pulses moving along a taut string with...

At t = 0, the instantaneous position of two pulses moving along a taut string with a speed v = 1.59 cm/s are as shown in the diagram below. Each unit on the horizontal axis is 3.0 cm and each unit on the vertical axis is 3.0 cm.

(a) At what location and time will the midpoint of pulse 1 coincide with the leading edge of pulse 2?

location     cm
time        s


(b) What is the y-value of the resultant wave at the time and location determined in part (a)?
cm

(c) At what location and time will the midpoint of pulse 1 coincide with the midpoint of pulse 2?

location     cm
time        s


(d) What is the y-value of the resultant wave at the time and location determined in part (c)?

cm

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A wave travels along a taut string in the positive x-axis direction. Its wavelength is 40...
A wave travels along a taut string in the positive x-axis direction. Its wavelength is 40 cm and its speed of propagation through the string is 80 m / s. The amplitude of the wave is 0.60 cm. At t = 0 the point of the chord at x = 0 is at the point of maximum oscillation amplitude, y = + A. a) Write the equation of the wave in the form of sine [y = A sin (kx...
A wave travels along a taut string in the positive x-axis direction. Its wavelength is 40...
A wave travels along a taut string in the positive x-axis direction. Its wavelength is 40 cm and its speed of propagation through the string is 80 m / s. The amplitude of the wave is 0.60 cm. At t = 0 the point of the chord at x = 0 is at the point of maximum oscillation amplitude, y = + A. a) Write the equation of the wave in the form of sine [y = A sin (kx...
2-A wave travels a taut string in the positive direction of the x axis. Its wavelength...
2-A wave travels a taut string in the positive direction of the x axis. Its wavelength is 40 cm and its speed of propagation by the rope is 80 m / s. The amplitude of the wave is 0.60 cm. At t = 0 the point of the chord at x = 0 is at the point of maximum amplitude of oscillation, y = + A. a) Write the equation of the wave in the form of sine [y =...
The wave function for a traveling wave on a taut string is (in SI units) y(x,t)...
The wave function for a traveling wave on a taut string is (in SI units) y(x,t) = 0.380 sin (5πt − 4πx + π 4) (a) What are the speed and direction of travel of the wave? speed ________ m/s direction(positive-x, positive-y, positive-z, negative-x, negative-y, negative-z) (b) What is the vertical position of an element of the string at t = 0, x = 0.120 m? _______m (c) What is the wavelength of the wave? _______m (d) What is the...
A transverse sinusoidal wave is moving along a string in the positive direction of an x...
A transverse sinusoidal wave is moving along a string in the positive direction of an x axis with a speed of 93 m/s. At t = 0, the string particle at x = 0 has a transverse displacement of 4.0 cm from its equilibrium position and is not moving. The maximum transverse speed of the string particle at x = 0 is 16 m/s. (a) What is the frequency of the wave? (b) What is the wavelength of the wave?...
A standing wave on a string fixed at both ends is described by y(x,t)=2 sin((π/3)x)cos((π/3)t), where...
A standing wave on a string fixed at both ends is described by y(x,t)=2 sin((π/3)x)cos((π/3)t), where x and y are given in cm and time t is given in s. Answer the following questions a) Find the two simplest travelling waves which form the above standing wave b) Find the amplitude, wave number, frequency, period and speed of each wave(Include unit in the answer) c) When the length of the string is 12 cm, calculate the distance between the nodes...
1.). Two sinusoidal waves are moving through a medium in the same direction, both having amplitudes...
1.). Two sinusoidal waves are moving through a medium in the same direction, both having amplitudes of 4.00 cm, a wavelength of 3.50 m, and a period of 6.25 s, but one has a phase shift of an angle φ. What is the phase shift (in rad) if the resultant wave has an amplitude of 4.00 cm? Hint: Use the trig identity 2.). Consider two sinusoidal sine waves traveling along a string, modeled as y1(x, t) = (0.2 m)sin[(6 m−1)x...
1. A cord of mass 0.65 kg is stretched between two supports 8.0 m apart. If...
1. A cord of mass 0.65 kg is stretched between two supports 8.0 m apart. If the tension in the cord is 140 N, how long will it take a pulse to travel from one support to the other? 2. A 50.0 Kg ball hangs from a steel wire 1.00 mm in diameter and 6.00 m long. What would be the speed of a wave in the steel wire? 3. The intensity of an earthquake wave passing through the earth...
Open the Wave on a String PhET simulation. Set the following parameters: Simulation PAUSED Damping None...
Open the Wave on a String PhET simulation. Set the following parameters: Simulation PAUSED Damping None Tension High Rope’s End No End Source Oscillate Ruler Enabled Amplitude 0.5 cm Set the frequency of oscillation to 1.5 Hz. Run the simulation by clicking on the Play/Pause button. Measure the wavelength of the wave, using the ruler and the Play/Pause button. Repeat step 3 but increase the frequency to 3 Hz. Determine the wavelength of the wave. Summarize your data in Data...
a) A 1 meter long guitar string of linear mass density 2g/m3 is put under tension...
a) A 1 meter long guitar string of linear mass density 2g/m3 is put under tension until it resonates with a fundamental frequency of 440 Hz. Determine the tension that produces this fundamental frequency. Also determine the other of the first four harmonic frequencies and draw diagrams illustrating what each of these oscillations looks like on the string. b) This string will produce sound waves in the air, determine the wavelength of the sound waves. c) Suppose you had two...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT