Question

The displacement of a block of mass 0.933 kg attached to a spring whose spring constant...

The displacement of a block of mass 0.933 kg attached to a spring whose spring constant is 66N/m is given by x=Asin(ωt) where A=0.21m. In the first complete cycle find the values of x and t at which the kinetic energy is equal to one half the potential energy.

First position:  cm...... First time:  s.

Second position:  cm...... Second time:  s..

Third position:  cm...... Third time:  s.

Fourth position:  cm...... Fourth time:  s.

Homework Answers

Answer #1

The answer to your question is pls ignore the rough work.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block with a mass of 2.50 kg on a spring has displacement as a function...
A block with a mass of 2.50 kg on a spring has displacement as a function of time given by the equation x(t)= (7.9 cm) cos [5.5 rad/s) t - 2.42 rad]. Part A: what is maximum kinetic energy during oscillation? (.......J) Part B: what is the velocity of block at t = 2.3 s ? (.....m/s) Part C: if kinetic energy and potential energy are equal, what is the positive value of the displacement? (X=.....cm) (i have only 1...
A 0.019 kg block on a horizontal frictionless surface is attached to a string whose spring/force/elastic...
A 0.019 kg block on a horizontal frictionless surface is attached to a string whose spring/force/elastic constant k is 120 N/m. The block is pulled from its equilibrium position at x=0 m to a displacement x=+0.080 m and is released from rest. The block then executes simple harmonic motion along x-axis (horizontal). When the displacement is x=0.051 m, what is the kinetic energy of the block in J?
A spring is attached to a wall, and a 0.50 kg block is attached to the...
A spring is attached to a wall, and a 0.50 kg block is attached to the other end of the spring. The spring-block system sits on a frictionless surface so that the block is able to oscillate without losing energy. The spring constant of the spring is k = 25 N/m. The block is pushed so that it compresses the spring by 20 cm beyond its equilibrium position. The block is released from rest at exactly the same time as...
A mass-spring oscillator consists of a 1.95-kg block attached to a spring of spring constant 145...
A mass-spring oscillator consists of a 1.95-kg block attached to a spring of spring constant 145 N/m. At time t = 2.30 s, the position and the velocity of the block are x = 0.130 m and v = 5.84 m/s respectively. What was the position of the block at t = 0? What was the speed of the block at t = 0?
A block with mass 2 kg is attached to an ideal massless spring and undergoes simple...
A block with mass 2 kg is attached to an ideal massless spring and undergoes simple harmonic oscillations with a period of 0.50 s. The surface is frictionless. The amplitude of the oscillation is 0.1 m. (a) What is the spring constant of the spring? (b) What is the total mechanical energy of the system (the spring and block system)? (c) What is the maximum speed of the block? (d) What is the speed of the block when the displacement...
A block with mass 2 kg is attached to an ideal massless spring and undergoes simple...
A block with mass 2 kg is attached to an ideal massless spring and undergoes simple harmonic oscillations with a period of 0.50 s. The surface is frictionless. The amplitude of the oscillation is 0.1 m. (a) What is the spring constant of the spring? (b) What is the total mechanical energy of the system (the spring and block system)? (c) What is the maximum speed of the block? (d) What is the speed of the block when the displacement...
A block of mass m = 4.5 kg is attached to a spring with spring constant...
A block of mass m = 4.5 kg is attached to a spring with spring constant k = 610 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 29° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.13. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...
A 1-kg mass is attached to a spring whose constant is 16 N/m and the entire...
A 1-kg mass is attached to a spring whose constant is 16 N/m and the entire system is then submerged in a liquid that imparts a damping force numerically equal to 10 times the instantaneous velocity. Determine the equation if (A) The weight is released 60 cm below the equilibrium position. x(t)= ; (B) The weight is released 60 cm below the equilibrium position with an upward velocity of 17 m/s. x(t)= ; Using the equation from part b, (C)...
. A block of mass 2.00 kg is attached to a horizontal spring with a force...
. A block of mass 2.00 kg is attached to a horizontal spring with a force constant of 500 N/m. The spring is stretched 5.00 cm from its equilibrium position and released from rest. Use conservation of mechanical energy to determine the speed of the block as it returns to equilibrium (a) if the surface is frictionless (b) if the coefficient of kinetic friction between the block and the surface is 0.350
A block of mass m = 2.00 kg is attached to a spring of force constant...
A block of mass m = 2.00 kg is attached to a spring of force constant k = 600 N/m as shown in the figure below. The block is pulled to a position xi = 5.35 cm to the right of equilibrium and released from rest. (a) Find the speed the block has as it passes through equilibrium if the horizontal surface is frictionless. m/s (b) Find the speed the block has as it passes through equilibrium (for the first...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT