Question

A lead bullet of mass 3.43 g and temperature 28.6C traveling at an unknown speed gets...

A lead bullet of mass 3.43 g and temperature 28.6C traveling at an unknown speed gets embedded in a block of ice of temperature 00C. Calculate the initial speed of the bullet if 0.500 g of ice melts. Assume that the entire kinetic energy of the bullet is converted into heat, that is transferred to the ice. Also, do not forget that the bullet cools down from 28.6C to 0C. Express your answer in m/s

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A lead bullet of unknown mass leaves a rifle at a temperature of 87 C and...
A lead bullet of unknown mass leaves a rifle at a temperature of 87 C and hits a steel plate. Upon impact exactly half of the bullet's mass melts. Assume that only 40% of the bullet's initial kinetic energy goes into increasing its temperature and then partially melting it. What was the initial speed of the bullet? melting temperature of LEAd: 327 C specific heat of Lead: 0.13E3 J/(Kg.K) Latent heat of fusion: 22.9E3 J/kg
A 2.03-g lead bullet traveling at 508 m/s strikes a target, converting its kinetic energy into...
A 2.03-g lead bullet traveling at 508 m/s strikes a target, converting its kinetic energy into thermal energy. Its initial temperature is 40.0°C. The specific heat is 128 J/(kg · °C), latent heat of fusion is 24.5 kJ/kg, and the melting point of lead is 327°C. (a) Find the available kinetic energy of the bullet. J (b) Find the heat required to melt the bullet. J
A firearms company is testing a new model of rifle by firing a 7.50-g lead bullet...
A firearms company is testing a new model of rifle by firing a 7.50-g lead bullet into a block of wood having a mass of 17.5 kg. The bullet embeds into the block and the collision generates heat. As a consequence, the temperature rises by 0.040°C, as measured with a high-precision thermometer. Assuming that all the kinetic energy of the bullet goes into heating the system, what is the bullet’s speed when it enters the block? The initial temperatures of...
IP A bullet with a mass of 4.2 g and a speed of 640 m/s is...
IP A bullet with a mass of 4.2 g and a speed of 640 m/s is fired at a block of wood with a mass of 9.8×10−2 kg . The block rests on a frictionless surface, and is thin enough that the bullet passes completely through it. Immediately after the bullet exits the block, the speed of the block is 21 m/s . What is the speed of the bullet when it exits the block? Is the final kinetic energy...
A 9.00-g lead bullet leaves the rifle at a temperature of 80.0 ˚C and hits a...
A 9.00-g lead bullet leaves the rifle at a temperature of 80.0 ˚C and hits a steel plate. If the bullet melts on impact, what is the minimum speed it must have? a) 221 m/s b) 251 m/s c) 335 m/s d) 350 m/s
1. A copper block with a mass 1.32 kg is given an initial speed of 2.7...
1. A copper block with a mass 1.32 kg is given an initial speed of 2.7 m/s on a rough horizontal surface. Because of friction, the block finally comes to rest. Assume that 70.8 % of the initial kinetic energy is absorbed by the block in form of heat, what is the change in temperature (in - do not enter units) of the block? Data: cCu=387 2. A 2.62g aluminum bullet at 32.0°C is fired at a speed of 275...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT