Question

Consider the time-dependent ground state wave function
Ψ(*x,t* *)* for a quantum particle confined to an
impenetrable box.

(a) Show that the real and imaginary parts of Ψ(*x,t)* ,
separately, can be written as the sum of two travelling waves.

(b) Show that the decompositions in part (a) are consistent with your understanding of the classical behavior of a particle in an impenetrable box.

Answer #2

answered by: anonymous

Recall that |ψ|2dx is the probability of finding the particle
that has normalized wave function ψ(x) in the interval x to x+dx.
Consider a particle in a box with rigid walls at x=0 and x=L. Let
the particle be in the first excited level and use
ψn(x)=2L−−√sinnπxL
For which values of x, if any, in the range from 0 to L is the
probability of finding the particle zero?
For which v alues of x is the probability highest?Express your...

The wave function of a particle in a one-dimensional box of
length L is ψ(x) = A cos (πx/L).
Find the probability function for ψ.
Find P(0.1L < x < 0.3L)
Suppose the length of the box was 0.6 nm and the particle was an
electron. Find the uncertainty in the speed of the particle.

A particle is described by the wave function ψ(x) = b(a2 - x2)
for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are
positive real constants.
(a) Using the normalization condition, find b in terms of a.
(b) What is the probability to find the particle at x = 0.33a in
a small interval of width 0.01a?
(c) What is the probability for the particle to be found...

A particle is described by the wave function ψ(x) = b(a2 - x2)
for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are
positive real constants.
(a) Using the normalization condition, find b in terms of a.
(b) What is the probability to find the particle at x = 0.33a in
a small interval of width 0.01a?
(c) What is the probability for the particle to be found...

A free particle has the initial wave function Ψ(x, 0) = Ae−ax2
where A and a are real and positive constants. (a) Normalize it.
(b) Find Ψ(x, t). (c) Find |Ψ(x, t)| 2 . Express your result in
terms of the quantity w ≡ p a/ [1 + (2~at/m) 2 ]. At t = 0 plot |Ψ|
2 . Now plot |Ψ| 2 for some very large t. Qualitatively, what
happens to |Ψ| 2 , as time goes on? (d)...

The wave function for a particle confined to a one-dimensional
box located between x = 0 and x = L is given by Psi(x) = A sin
(n(pi)x/L) + B cos (n(pi)x/L) . The constants A and B are
determined to be

Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2)
cos(πx/2) on the interval 0 ≤ x ≤ 1.
(1) What is the normalization constant, C?
(2) Express ψ(x,0) as a linear combination of the eigenstates of
the infinite square well on the interval, 0 < x < 1. (You
will only need two terms.)
(3) The energies of the eigenstates are En =
h̄2π2n2/(2m) for a = 1. What is
ψ(x, t)?
(4) Compute the expectation...

Normalize the following wave function (3)
Ψ(x, t) = (
Ce−γx+iδt, x ≥ 0
0, x < 0
where γ and δ are some real constants and γ > 0.

Consider a free, unbound particle with V(x) = 0 and the initial
state wave function: phi(x,0) = Ae^(-a|x|)
1. Construct phi(x,t)
2. Discuss the limiting cases, i.e. what happens to position
and momentum when a is bery small and when a is very large?

. Consider the continuous time signal, x(t) = e jω0t . Write an
expression for the even and odd portions of this function, and show
that the even and odd parts sum up to the original x(t). Do you
recognize the even and odd functions? What are they called?

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 2 minutes ago

asked 2 minutes ago

asked 2 minutes ago

asked 2 minutes ago

asked 3 minutes ago

asked 3 minutes ago

asked 4 minutes ago

asked 4 minutes ago

asked 6 minutes ago

asked 6 minutes ago

asked 6 minutes ago

asked 8 minutes ago