Question

STRING'S WAVE EQUATION Derive the wave equation for a string: The second derivative of y with...

STRING'S WAVE EQUATION

Derive the wave equation for a string: The second derivative of y with time = v squared times the second derivative of y with x. Explain and Sketch the diagram.

Homework Answers

Answer #1

please upvote ? if you like my answer ?

​​​

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A wave on a string is described by the equation y = 12 cos(1.57 x -...
A wave on a string is described by the equation y = 12 cos(1.57 x - 6.28 t). The lengths are measured in cm and time in s. Determine; (a) the amplitude, frequency, and the time it takes for the wave repeats itself, (b) the speed of the wave and the distance a peak of the wave travels in 3 T + .5 s. (c) Paint a point on this string. What length does this point move in 2.5 s.
The second harmonic standing wave on a particular string fixed at both ends is given by:...
The second harmonic standing wave on a particular string fixed at both ends is given by: y(x, t) = 0.01 sin(2π x) cos(200π t) (in SI units). a) Fill in the following information: λ2 = f2 = v = b) How long is the string, and what is its fundamental frequency? L =   f1 = c) This second harmonic wave has total energy E2. If the string is plucked so that has the first harmonic wave on it instead at...
the equation of a transverse wave traveling in a string is given by y=a sin(k x??t)....
the equation of a transverse wave traveling in a string is given by y=a sin(k x??t). the tension in the string is 20.0 n, a = 2 mm, k = 30 rad/m, ? = 850 rad/s. what is the wave speed? what is the linear density of the string?
A sinusoidal wave travels down a long string. The y displacement of the string is given...
A sinusoidal wave travels down a long string. The y displacement of the string is given at right, as a function of both x position along the string and time t. Positions x and y are measured in meters, t is in seconds. Find the wavelength, frequency, and period of this waveform. y(x, t)=ysin(36.9t+2.43x) If x is to the right, what direction is this wave traveling? At time t = 0.0165 s, and a position x = 0.913 m, what...
A wave propagates along a string and is reflected at the free end of the string....
A wave propagates along a string and is reflected at the free end of the string. If we set the free end of the string as x=0, the wave can be described by y=0.2sin(1.5*pi*x-pi*t); here y is in unit of meters, and t is in unit of seconds. (a) What is the resultant wave equation when the reflected wave combines with the incoming wave? (b) What would be the resultant wave equation if the end of string (x=0) is not...
7. A wave on a string has a displacement according to the equation: y(x,t) = 25.0...
7. A wave on a string has a displacement according to the equation: y(x,t) = 25.0 cm sin ((36.0/m)x – (8.00/sec)t) Determine the amplitude, frequency, period, velocity, and wavelength of the wave. Also determine the transverse velocity at t = 0.16 sec.
A wave on a string is described by the equation y(x, t) = 2*cos(2 π(x/4m- t...
A wave on a string is described by the equation y(x, t) = 2*cos(2 π(x/4m- t /.1 s)) where x is in meters and t is in seconds. a. Is the wave travelling to the right or to the left? _________ b. What is the wave frequency? __________ c. What is the wavelength? ___________ d. What is the wave speed? _________ e. At t=0.50 seconds what is the displacement of the string at x=0.20 meters. _________
A wave on a string has a displacement according to the equation: y(x,t) = 25.0 cm...
A wave on a string has a displacement according to the equation: y(x,t) = 25.0 cm sin ((36.0/m)x – (8.00/sec)t) Determine the amplitude, frequency, period, velocity, and wavelength of the wave. Find the maximum x. Also determine the transverse velocity at t = 0.16 sec and x's maximum.
A wave on a string is described by the equation y(x,t)=3.0 cm*〖cos(〗⁡〖2π*(x/2.4m+t/(0.2 s)))〗 . X is...
A wave on a string is described by the equation y(x,t)=3.0 cm*〖cos(〗⁡〖2π*(x/2.4m+t/(0.2 s)))〗 . X is in meters and t is in seconds. Is the wave travelling to the right or to the left? _________ What is the wave speed? _________ What is the wave frequency? __________ What is the wavelength? ___________ At t=0.50 seconds what is the displacement of the string at x=0.20 meters. _________
A wave on a string can be described by the following equation: y(x,t)=9.2cos(4.2x+0.85t) where y and...
A wave on a string can be described by the following equation: y(x,t)=9.2cos(4.2x+0.85t) where y and x are in meters and t is in seconds. 1) What is the speed of the wave? 0.79 m/s 1.27 m/s 0.2 m/s 4.94 m/s 0.03 m/s 2) What is its wavelength? 0.2 m 0.67 m 7.39 m 5.34 m 1.5 m 3) What is the acceleration of the string in the y direction at x=1.7 m and t=7 seconds? 3.91 m/s2 7.97 m/s2...