Question

Problem 3: A spool of string hangs on a peg in the wall. The spool is...

Problem 3: A spool of string hangs on a peg in the wall. The spool is a hoop with a radius of 0.25 m and a mass of 2kg. A mass of 0.5 kg is tied to the end of the string hanging off of the spool. The mass is held 2 m above the floor when it is released. The string is taut the entire time. a) What is the speed of the mass as it hits the ground? (Answer: 2.8") b) What is the final angular velocity of the spool? (Answer: 11.2 "ad) c) Consider the spool as the system and use the work kinetic energy theorem. How much work did tension created by the hanging mass do to the spool? (Answer: 7.84) • What is the angular displacement of the spool? (Answer: 8 rad) • What is the angular acceleration of the spool? (Answer: 7.84 ) • What is the torque applied to the spool? (Answer: 0.98 Nm) • What is the tension in the string? (Answer: 3.92 N)

Can Someone show how to solve these? I am having a difficult time. Thank you!

Homework Answers

Answer #1

Dear student,

Find this solution, and RATE IT ,If you find it is helpful .your rating is very important to me.If any incorrectness ,kindly let me know I will rectify them soon.

Thanks for asking ..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An green hoop with mass mh = 2.7 kg and radius Rh = 0.15 m hangs from a string that...
An green hoop with mass mh = 2.7 kg and radius Rh = 0.15 m hangs from a string that goes over a blue solid disk pulley with mass md = 2.1 kg and radius Rd = 0.09 m. The other end of the string is attached to a massless axel through the center of an orange sphere on a flat horizontal surface that rolls without slipping and has mass ms = 3.7 kg and radius Rs = 0.19 m. The system is released from rest. 1. What is magnitude...
A ball with a mass of 270 g is tied to a light string that has...
A ball with a mass of 270 g is tied to a light string that has a length of 2.40 m. The end of the string is tied to a hook, and the ball hangs motionless below the hook. Keeping the string taut, you move the ball back and up until it is a vertical distance of 1.16 m above its equilibrium point. You then release the ball from rest, and it oscillates back and forth, pendulum style. As usual,...
A green hoop with mass mh = 2.4 kg and radius Rh = 0.14 m hangs...
A green hoop with mass mh = 2.4 kg and radius Rh = 0.14 m hangs from a string that goes over a blue solid disk pulley with mass md = 2.3 kg and radius Rd = 0.08 m. The other end of the string is attached to an orange block on a flat horizontal surface that slides without friction and has mass m = 3.6 kg (see Figure 1). The system is released from rest. (a) What is magnitude...
A 3.30 kg object hangs, at rest, on a 1.40 m long string attached to the...
A 3.30 kg object hangs, at rest, on a 1.40 m long string attached to the ceiling. A 109 g object is fired with a speed of 16 m/s at the 3.30 kg object, and the two objects collide and stick together in an inelastic collision. Write an equation for the motion of the system after the collision. Assume air resistance is negligible. (Assume the collision occurs at t = 0. Let θ be the angle between the initial position...
A mass hung on a string that is wrapped around an axle on a wheel produces...
A mass hung on a string that is wrapped around an axle on a wheel produces a tension in the string of 6.00 N. The axle has a radius of 0.050 m. The wheel has a mas of 4.000 kg and a radius of 0.100 m, and a thickness of 0.050m. 1)What is the torque produced by the tension on the axle, show your work. 2) Regarding the shape of the wheel as that of a uniform, solid cylinder, what...
A hanging weight, with a mass of m1 = 0.370 kg, is attached by a string...
A hanging weight, with a mass of m1 = 0.370 kg, is attached by a string to a block with mass m2 = 0.850 kg as shown in the figure below. The string goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R1 = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As...
Problem 4 [25 pts]. (It is the same physical system as in the Problem 3) A...
Problem 4 [25 pts]. (It is the same physical system as in the Problem 3) A hoop of mass M=400.g and radius R=20.0 cm is rolling without slipping in clockwise direction down an incline plane with the incline angle ? = 20? . 1. How much work is done by frictional force acting on the hoop on (1) translation, (2) rotation of the hoop? Show all work so that your final answer is justified. 2. How much is ???ℎ?? on...
A simple pendulum with mass m = 2 kg and length L = 2.67 m hangs...
A simple pendulum with mass m = 2 kg and length L = 2.67 m hangs from the ceiling. It is pulled back to an small angle of θ = 11° from the vertical and released at t = 0. 1)What is the period of oscillation? s   2)What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? N   3)What is the maximum speed of the pendulum? m/s   4)What is the angular displacement at...
Problem 2. (based on Young & Freedman 9.47) A frictionless pulley has the shape of a...
Problem 2. (based on Young & Freedman 9.47) A frictionless pulley has the shape of a uniform solid disk of mass 2.50 kg and radius .0200 m. A stone of unknown mass is attached to a very light wire that is wrapped around the rim of the pulley. When the system is released from rest, the stone accelerates downward at 5.9 m/s 2 (a) What is the angular acceleration of the pulley? Answer: 295 rad/s 2 (b) Find the torque...
Please show work, I'm having trouble answering these :( 1)A bicycle with 0.3 m radius wheels,...
Please show work, I'm having trouble answering these :( 1)A bicycle with 0.3 m radius wheels, is moving such that the angular speed of each wheel is 75 rad/s. If the bicyclist then applies the brakes and the wheels slow with an angular acceleration of -15 rad/s2, how many revolutions will each wheel make before the bike stops? A. 188 revolutions B. 1.07e4 revolutions 1C.14.7 revolutions D. 62.7 revolutions E.29.8 revolutions 2)You tie the loose end of a 0.1 kg...