Question

A 0.75-m-diameter solid sphere can be rotated about an axis through its center by a torque...

A 0.75-m-diameter solid sphere can be rotated about an axis through its center by a torque of 12.8 m∗N which accelerates it uniformly from rest through a total of 170 revolutions in 14.0 s .

What is the mass of the sphere?

Homework Answers

Answer #1

here,

the diameter of solid sphere , d = 0.75 m

the radius of solid sphere , r = d/2

r = 0.375 m

the torque applied , T = 12.8 N.m

the time taken , t = 14 s

the angle covered , theta = 170 rev = 1067.6 rad

let the angular acceleration be alpha

theta = w0 * t + 0.5 * alpha * t^2

1067.6 = 0 + 0.5 * alpha * 14^2

solving for alpha

alpha = 10.89 rad/s^2

let the mass of sphere be m

the torque applied , T = I * alpha

12.8 = (0.4 * m * r^2) * ( 10.89)

12.8 = (0.4 * m * 0.375^2) * ( 10.89)

solving for m

m = 20.9 kg

the mass of sphere is 20.9 kg

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A disk rotates about a fixed axis through its center of mass and perpendicular to the...
A disk rotates about a fixed axis through its center of mass and perpendicular to the disk. It starts from rest and accelerates uniformly, reaching angular speed ωafter 5.14 revolutions. If it continues to accelerated at the same rate, how many more revolutions would it take the disk to reach angular speed 9.6ω rad/s?     A disk spins at ωo = 63.4 rad/s on an axis through its center of mass. At t = 0 it begins to accelerate at α...
A solid cylinder is free to rotate about an axis through its center. If the rotational...
A solid cylinder is free to rotate about an axis through its center. If the rotational inertia of the cylinder is .56 kg m^2, and the cylinder is initially at rest, how long must a net torque of 2.1 Nm act on the cylinder to bring it up to an angular speed of 44 rad/s?
A uniform solid sphere of radius r = 0.410 m and mass m = 13.0 kg turns clockwise about a vertical axis through its center (when viewed from above),...
A uniform solid sphere of radius r = 0.410 m and mass m = 13.0 kg turns clockwise about a vertical axis through its center (when viewed from above), at an angular speed of 3.20 rad/s. What is its vector angular momentum about this axis? (Enter the magnitude in kg · m2/s.) magnitude ? direction?
A 4.8 kg uniform solid sphere has a radius of 32 cm and is initially at...
A 4.8 kg uniform solid sphere has a radius of 32 cm and is initially at rest. It is mounted so that it can rotate about an axis throughout its center of mass. If a constant net torque of 17Nm is applied to the sphere (about its center of mass), then find the power applied to the sphere 2.4s after it begins rotating.
A solid sphere of unknown mass experiences a torque of 2.2 N*m that rotates it with...
A solid sphere of unknown mass experiences a torque of 2.2 N*m that rotates it with an angular acceleration of 5.7 rad/s^2. If the sphere has a radius of 0.25 m, what is its mass? A) 8.5 kg B) 15 kg C) 3.1 kg D) 150 kg
A hollow sphere and a solid sphere, both of mass M and radius R, are each...
A hollow sphere and a solid sphere, both of mass M and radius R, are each spinning about an axis through their centers with the same angular speed. If the same braking torque is applied to each, which takes longer to come to a stop? A. hollow sphere B. solid sphere C. They both come to a stop in an equal amount of time.
A nonconducting sphere 1.3 m in diameter with its center on the x axis at x...
A nonconducting sphere 1.3 m in diameter with its center on the x axis at x = 4 m carries a uniform volume charge of density ρ = 4.9 µC/m3. Surrounding the sphere is a spherical shell with a diameter of 2.6 m and a uniform surface charge density σ = -0.9 µC/m2. Calculate the magnitude and direction of the electric field at the following locations. (a) x = 4.6 m, y = 0   N/C î +   N/C ĵ (b) x...
A grinding wheel is in the form of a uniform solid disk of radius 6.95 cm...
A grinding wheel is in the form of a uniform solid disk of radius 6.95 cm and mass 1.91 kg. It starts from rest and accelerates uniformly under the action of the constant torque of 0.591 N · m that the motor exerts on the wheel. (a) How long does the wheel take to reach its final operating speed of 1 240 rev/min? s (b) Through how many revolutions does it turn while accelerating?
A nonconducting sphere 1.8 m in diameter with its center on the x axis at x...
A nonconducting sphere 1.8 m in diameter with its center on the x axis at x = 4 m carries a uniform volume charge of density ρ = 4.6 µC/m3. Surrounding the sphere is a spherical shell with a diameter of 3.6 m and a uniform surface charge density σ = -1.5 µC/m2. Calculate the magnitude and direction of the electric field at the following locations. (a) x = 4.8 m, y = 0 ____N/C î + ____N/C ĵ (b)...
A grinding wheel is in the form of a uniform solid disk of radius 7.07 cm...
A grinding wheel is in the form of a uniform solid disk of radius 7.07 cm and mass 2.06 kg. It starts from rest and accelerates uniformly under the action of the constant torque of 0.590 N · m that the motor exerts on the wheel. (a) How long does the wheel take to reach its final operating speed of 1 220 rev/min? s (b) Through how many revolutions does it turn while accelerating? rev