Question

Let A be the sum of the last three digits, let B be the last three...

Let A be the sum of the last three digits, let B be the last three digits, and let C be the last digit of your 8-digit student ID. Example: for 20245347, A = 14, B = 347, and C=7.
The speed of a wave in a string is given by v = √(FT /μ), where FT is the tension in the string and μ = mass / length of the string.
A 2.00 m long string has a mass of (A+1.50) g. A (B+25.0) g mass is attached to the string and hung over a pulley (see illustration from one of the team problems). The end of the string is then vibrated at a frequency of (125+C) Hz. Find the wavelength for the wave generated. Give your answer in centimeters (cm) and with 3 significant figures.

A=4 B= 4 C=4

Homework Answers

Answer #1

__________________________

T = (0.004 + 0.025) x 9.8 = 0.2842 N

linear mass density = mass / length = (4 + 1.50) x 10^-3 / 2

linear mass density = 2.75 x 10^-3 kg / m


v = sqrt[ T / linear mass density]

v = sqrt[ 0.2842/ (2.75 x 10^-3)]

v = 10.166 m/s

wavelength = v / f

wavelength= 10.166 / (125 + 4)

wavelength= 0.078805 m

wavelength= 7.81 cm

__________________________

Please rate

if any mistake in this answer please comment i will clarify your doubt . thank you

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A = 18, B = 693, C = 3. The speed of a wave in a...
A = 18, B = 693, C = 3. The speed of a wave in a string is given by v = sqrt(FT/μ), where FT is the tension in the string and μ = mass/length of the string. A 2.00 m long string has a mass of (A+1.50) g. A (B+25.0) g mass is attached to the string and hung over a pulley (see illustration from one of the team problems). The end of the string is then vibrated at...
The speed of a wave in a string is given by v = sqrt(FT/μ), where FT...
The speed of a wave in a string is given by v = sqrt(FT/μ), where FT is the tension in the string and μ = mass/length of the string. A 2.00 m long string has a mass of 16.5 g. A 769 g mass is attached to the string and hung over a pulley . The end of the string is then vibrated at a frequency of 129 Hz. Find the wavelength for the wave generated. Give your answer in...
A 2.00 m long string has a mass of (A + 1.50) g. A (B +...
A 2.00 m long string has a mass of (A + 1.50) g. A (B + 25.0) g mass is attached to the string and hung over a pulley (see illustration from one of the team problems). The end of the string is then vibrated at a frequency of (125 + C) Hz. Find the wavelength for the wave generated. Give your answer in centimeters (cm) and with 3 significant figures. A = 13 B = 427 C = 7
A 2.00 m long string has a mass of (A+1.50) g. A (B+25.0) g mass is...
A 2.00 m long string has a mass of (A+1.50) g. A (B+25.0) g mass is attached to the string and hung over a pulley (see illustration from one of the team problems). The end of the string is then vibrated at a frequency of (125+C) Hz. Find the wavelength for the wave generated. Give your answer in centimeters (cm) and with 3 significant figures. A=22 B=958 C=8
Let A be the last digit and let B be the sum of the last three...
Let A be the last digit and let B be the sum of the last three digits of your 8-digit student ID. Example: for 20245347, A = 7 and B =14. Consider a string with a length of (47.5 +A) cm tied at both end (like on a stringed instrument). If the frequency of the first harmonic on the string is (245+B) Hz, determine the speed of the wave in the string. Post your answer in m/s and with 3...
question 1: Let A be the last digit, let B be the second to last digit,...
question 1: Let A be the last digit, let B be the second to last digit, and let C be the sum of the last three digits of your 8-digit student ID. Example: for 20245347, A = 7, B = 4, and C = 14. Starting from rest, a student pulls a (25.0+A) kg box a distance of (4.50 + B) m across the floor using a (134 + C) N force applied at 35.0 degrees above horizontal. The coefficient...
Let A be the last two digits, let B be the last digit, and let C...
Let A be the last two digits, let B be the last digit, and let C be the sum of the last three digits of your 8-digit student ID. Example: for 20245347, A = 47, B = 7, and C = 14. Consider two carts on a track. Cart A with mass mA = (0.300 + (A/100)) kg has a speed of (2.50 + B) m/s before colliding with and sticking to cart B. Cart has a mass mB =...
A standing wave pattern is created on a string with mass density μ = 3 ×...
A standing wave pattern is created on a string with mass density μ = 3 × 10-4 kg/m. A wave generator with frequency f = 63 Hz is attached to one end of the string and the other end goes over a pulley and is connected to a mass (ignore the weight of the string between the pulley and mass). The distance between the generator and pulley is L = 0.68 m. Initially the 3rd harmonic wave pattern is formed....
Let a, b, and c be the last three digits of your student ID. Find the...
Let a, b, and c be the last three digits of your student ID. Find the minimum and maximum of the function f(x,y) = 3x +xy+2y on the triangle with corners (a +b+c0. 0,a +b+c) (a +b+c,2a+2b +2c). a=4 b=1 c=8
A standing wave pattern is created on a string with mass density μ = 3 ×...
A standing wave pattern is created on a string with mass density μ = 3 × 10-4 kg/m. A wave generator with frequency f = 63 Hz is attached to one end of the string and the other end goes over a pulley and is connected to a mass (ignore the weight of the string between the pulley and mass). The distance between the generator and pulley is L = 0.68 m. Initially the 3rd harmonic wave pattern is formed....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT