Question

A very small object with mass 6.70×10−9 kg and positive charge 8.20×10−9 C is projected directly...

A very small object with mass 6.70×10−9 kg and positive charge 8.20×10−9 C is projected directly toward a very large insulating sheet of positive charge that has uniform surface charge density 5.90×10−8 C/m2. The object is initially 0.450 m from the sheet.

What initial speed must the object have in order for its closest distance of approach to the sheet to be 0.130 m?

Homework Answers

Answer #1

given

m = 6.7*10^-9 kg
q = 8.2*10^-9 C
sigma = 5.9*10^-8 C/m^2
let d = 0.45 - 0.13 = 0.32 m
electric field prodcued by the sheet, E = sigma/(2*epsilon)

= 5.9*10^-8/(2*8.854*10^-12)

= 3332 N/C

use, Work-energy theorem

Work done by electric force = change in kinetic energy

Fe*d*(cos(180)) = KEf - KEi

q*E*d*(-1) = 0 - (1/2)*m*vi^2

-q*E*d = (1/2)*m*vi^2

==> vi = sqrt(2*q*E*d/m)

= sqrt(2*8.2*10^-9*3332*0.32/(6.7*10^-9))

= 51.1 m/s <<<<<<<<<-------------------Answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A very small object with mass 8.30×10−9 kg and positive charge 7.00×10−9 C is projected directly...
A very small object with mass 8.30×10−9 kg and positive charge 7.00×10−9 C is projected directly toward a very large insulating sheet of positive charge that has uniform surface charge density 5.90×10−8C/m2. The object is initially 0.460 m from the sheet. A. What initial speed must the object have in order for its closest distance of approach to the sheet to be 0.230 m ? Express your answer to three significant figures and include the appropriate units.
A tiny spherical dust particle with mass 4.90×10−7 kg and charge 3.2 µC is released from...
A tiny spherical dust particle with mass 4.90×10−7 kg and charge 3.2 µC is released from rest a distance of 0.400 m above a large horizontal plastic sheet with uniform charge density 8.5×10−12 C/m2 . It arrives at a height 0.100 m above the sheet. c. What is the speed of the particle at the position it arrives at?
A positive point charge q1 = +5.00×10−4 C is held at a fixed position. A small...
A positive point charge q1 = +5.00×10−4 C is held at a fixed position. A small object with mass 4.00×10−3 kg and charge q2 = −4.00×10−4 C is projected directly at q1. Ignore gravity. When q2 is 0.400 m away, its speed is 800 m/s. What is its speed when it is 0.200 mm from q1?
A positive point charge q1 = +5.00×10−4 C is held at a fixed position. A small...
A positive point charge q1 = +5.00×10−4 C is held at a fixed position. A small object with mass 4.00×10−3 kg and charge q2 = −5.00×10−4 C is projected directly at q1. Ignore gravity. When q2 is 0.400 m away, its speed is 800 m/s. What is its speed when it is 0.200 m from q1? Express your answer with the appropriate units.
9. A point charge Q = 1.00 × 10−6 C is located at the centre of...
9. A point charge Q = 1.00 × 10−6 C is located at the centre of a non-conducting spherical shell of radius rA = 0.500 m that has a surface charge density of ηA = 1.25 × 10−6 C m−2 . This spherical shell is itself concentric with a conducting shell of radius rB = 1.00 m which initially has the same surface charge density but with opposite sign, i.e., initially, its surface charge density ηB = −ηA. The outer...
A positive charged thin cylindrical shell of lenght 10 m and radius 50 mm has no...
A positive charged thin cylindrical shell of lenght 10 m and radius 50 mm has no end caps and a uniform surface charge density of 5×10^-9 C/m^2. 1.What is the charge on the shell? 2.Determine the electric field magnitude far from either end of the shell at r=49 mm and also at r=51 mm,where r is the radial distance from the long central axis of the shell.
A) A very long hollow cylinder has a 15 cm radius and has positive charge spread...
A) A very long hollow cylinder has a 15 cm radius and has positive charge spread evenly over its surface, amounting to a linear charge density of 7 nC/m. Apply Gauss's Law to determine the electric field at r =20 cm away from the center, in units of N/C. As usual, do not include the unit in your answer. B) A very long hollow cylinder has a 15 cm radius and has positive charge spread evenly over its surface, amounting...
An alpha particle is a nucleus of helium. It has twice the charge and four times...
An alpha particle is a nucleus of helium. It has twice the charge and four times the mass of the proton. When they were very far away from each other, but headed toward directly each other, a proton and an alpha particle each had an initial speed of 0.002c, where c is the speed of light. What is their distance of closest approach? Hint: There are two conserved quantities. Make use of both of them. (c = 3.00 × 108...
An alpha particle is a nucleus of helium. It has twice the charge and four times...
An alpha particle is a nucleus of helium. It has twice the charge and four times the mass of the proton. When they were very far away from each other but headed toward directly each other, a proton and an alpha particle each had an initial speed of 4.4×10−3c, where c is the speed of light. What is their distance from the closest approach? There are two conserved quantities. Make use of both of them. (c = 3.00 × 108...
A small particle with positive charge q=+4.25×10^−4 C and mass m=5.00×10^−5 kg is moving in a...
A small particle with positive charge q=+4.25×10^−4 C and mass m=5.00×10^−5 kg is moving in a region of uniform electric and magnetic fields. The magnetic field is B=4.00 T in the +z-direction. The electric field is also in the +z-direction and has magnitude E=60.0 N/C. At time t = 0 the particle is on the y-axis at y=+1.00 m and has velocity v = 30.0 m/s in the +x-direction. Neglect gravity. What are the x-, y-, and z-coordinates of the...