Question

A car skids 18 m on a level road while trying to stop before hitting a...

A car skids 18 m on a level road while trying to stop before hitting a standing car in front of it. The two cars barely touch. The coefficient of kinetic friction between the first car and the road is 0.80.

Determine the initial speed of the skidding car.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2300 kg car moving at an initial speed of 25 m/s along a horizontal road...
A 2300 kg car moving at an initial speed of 25 m/s along a horizontal road skids to a stop in 50 m. (Note: When stopping without skidding and using conventional brakes, 100 percent of the kinetic energy is dissipated by friction within the brakes. With regenerative braking, such as that used in hybrid vehicles, only 70 percent of the kinetic energy is dissipated.) (a) Find the energy dissipated by friction. 718750 Incorrect: Your answer is incorrect. kJ (b) Find...
Traveling at 40.2 m/s, a driver applies the brakes to his fast-moving car and skids out...
Traveling at 40.2 m/s, a driver applies the brakes to his fast-moving car and skids out of control on a wet concrete horizontal road. The 2000 kg car is headed directly toward a student waiting to catch a bus to campus who is standing 58.0 m down the road. Luckily, Superman is flying overhead and surveys the situation. Knowing that the coefficient of kinetic friction between rubber and rough wet concrete is .800, he determines that friction alone will not...
A mass of 600 KG moving at 65 m/s begins breaking and skids on a slick...
A mass of 600 KG moving at 65 m/s begins breaking and skids on a slick pavement. Draw  the free body diagram for the car. if the car comes to a stop in 140 m what is the coefficient of kinetic friction between the tires and the road?
Bob is driving his car at 20 m/s down a hill with a slope of 5...
Bob is driving his car at 20 m/s down a hill with a slope of 5 degrees. When a deer suddenly jumps out of the woods onto the road, he slams on the brakes, and the car skids to a stop. The mass of the car is 1500 kg, and the coefficient of kinetic friction between the tires and the road is µk = 0.816. a) (3 points) Draw a free-body diagram for the car. b) (3 points) Determine the...
While driving down the street, your friend’s car was hit by a truck from behind.  The mass...
While driving down the street, your friend’s car was hit by a truck from behind.  The mass of your friend’s car is 1500 kg while the truck is 1800kg.  Your friend was driving 25 mph or 11.2 m/s. Assume that collision causes both cars to stick together and they do not supply additional power to the wheels after the collision. After the collision, the two cars slide to a stop. The coefficient of kinetic friction is 0.65 for the car and truck...
A car of mass 1500 kg is moving on a horizontal and straight road at 20...
A car of mass 1500 kg is moving on a horizontal and straight road at 20 m/s. At some point the driver hits the brakes and the car comes to a stop after it had moved a distance of 36m while the brakes were on. What is the coefficient of the kinetic friction between the wheels of the car and the road
A car of mass 1500 kg is moving on a horizontal and straight road at 20...
A car of mass 1500 kg is moving on a horizontal and straight road at 20 m/s. At some point the driver hits the brakes and the car comes to a stop after it had moved a distance of 36m while the brakes were on. What is the coefficient of the kinetic friction between the wheels of the car and the road?
A 1200 kg car traveling 15 m/s needs to stop in 0.8 seconds to avoid hitting...
A 1200 kg car traveling 15 m/s needs to stop in 0.8 seconds to avoid hitting a pedestrian. a.)What impulse must the car receive? b.) What average force does this mean must be applied? c.) What is the three-part name of this force? d.) If a typical tire has a coefficient of friction of 0.6, will the car stop in time?
A 950-kg sports car collides into the rear end of a 2400-kg SUV stopped at a...
A 950-kg sports car collides into the rear end of a 2400-kg SUV stopped at a red light. The bumpers lock, the brakes are locked, and the two cars skid forward 2.7 m before stopping. The police officer, estimating the coefficient of kinetic friction between tires and road to be 0.80, calculates the speed of the sports car at impact. What was the speed sports car at impact?
A 930 kg sports car collides into the rear end of a 2300 kg SUV stopped...
A 930 kg sports car collides into the rear end of a 2300 kg SUV stopped at a red light. The bumpers lock, the brakes are locked, and the two cars skid forward 3.1 m before stopping. The police officer, knowing that the coefficient of kinetic friction between tires and road is 0.80, calculates the speed of the sports car at impact. What was that speed?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT