Question

A 4.34-kg toy car with a speed of 4.13 m/s collides with a stationary 1.00-kg car. After the collision, the cars are locked together with a speed of 3.6 m/s. How much kinetic energy is lost in this collision?

Answer #1

the answer is 2.41 Joule.

1500-kg car moving at 16.00 m/s suddenly collides with a
stationary car of mass 1000 kg. Time of collision is .02 secs
e. What is the average force acting on the stationary car by the
moving car during the collision?
f. What is the total kinetic energy before the collision?
g. What is the total kinetic energy after the collision?
h. What is change in momentum?
i. What happens to the lost kinetic energy? Explain clearly
j. Is this an...

A ball with a mass of 1.50 kg travelling +2.00 m/s collides with
a stationary ball with a mass of 1.00 kg. After the collision, the
velocity of the 1.50 kg ball is +0.40 m/s. What is the velocity of
the 1.00 kg ball after the collision?
Select one:
a. - 0.7 m/s
b. + 3.6 m/s
c. + 2.4 m/s
d. + 1.8 m/s
An 18 000 kg freight car travelling 1.75 m/s[E] collides with a
27 000 kg...

A railroad car of mass 2.50 ✕ 104 kg moving at 3.40
m/s collides and couples with two coupled railroad cars, each of
the same mass as the single car and moving in the same direction at
1.20 m/s.
(a) What is the speed of the three coupled cars after the
collision?
(b) How much kinetic energy is lost in the collision?

A railroad car of mass 3.00 ? 104 kg moving at 3.00
m/s collides and couples with two coupled railroad cars, each of
the same mass as the single car and moving in the same direction at
1.20 m/s.
(a) What is the speed of the three coupled cars after the
collision?
_______ m/s
(b) How much kinetic energy is lost in the collision?
_______ J

A railroad car of mass 2.70 ✕ 104 kg moving at 3.50
m/s collides and couples with two coupled railroad cars, each of
the same mass as the single car and moving in the same direction at
1.20 m/s.
(a) What is the speed of the three coupled cars after the
collision?
m/s
(b) How much kinetic energy is lost in the collision?
J

A railroad car of mass 2.55 ✕ 104 kg moving at 3.25
m/s collides and couples with two coupled railroad cars, each of
the same mass as the single car and moving in the same direction at
1.20 m/s.
(a) What is the speed of the three coupled cars after the
collision?
m/s
(b) How much kinetic energy is lost in the collision?
J

A railroad car of mass 2.90 ? 104 kg moving at 3.05 m/s collides
and couples with two coupled railroad cars, each of the same mass
as the single car and moving in the same direction at 1.20 m/s. (a)
What is the speed of the three coupled cars after the collision?
m/s (b) How much kinetic energy is lost in the collision? J

A railroad car of mass 3.15 ✕ 104 kg moving at 3.10 m/s collides
and couples with two coupled railroad cars, each of the same mass
as the single car and moving in the same direction at 1.20 m/s.
(a) What is the speed of the three coupled cars after the
collision?
____m/s
(b) How much kinetic energy is lost in the collision?
_____J

A 5.0 kg toy-car moving with a speed of 10.0 m/s in +x direction
collides with a 7.0 kg toy truck moving with a velocity of 15.0 m/s
in a direction 37 degrees above +x direction. What is the velocity,
both the magnitude and direction, of the two objects after the
collision, if they remain stuck together?

A 900 kg car moving East with speed of 20 m/s collides with a
1500 kg car moving North with speed of 15 m/s at an intersection.
Both cars stick together after collision. What is the speed and
direction of these two stuck cars immediately after this
collision?

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 32 minutes ago

asked 58 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 3 hours ago

asked 3 hours ago

asked 3 hours ago

asked 3 hours ago

asked 4 hours ago