Question

Blocks A (mass 5.50 kg ) and B (mass 13.00 kg ) move on a frictionless,...

Blocks A (mass 5.50 kg ) and B (mass 13.00 kg ) move on a frictionless, horizontal surface. Initially, block B is at rest and block A is moving toward it at 3.00 m/s . The blocks are equipped with ideal spring bumpers. The collision is head-on, so all motion before and after the collision is along a straight line. Let +x be the direction of the initial motion of A.

Part A: Find the maximum energy stored in the spring bumpers and the velocity of each block at that time.
Find the maximum energy.

Part B: Find the velocity of A.

Part C: Find the velocity of B.

Part D: Find the velocity of each block after they have moved apart.
Find the velocity of A.

Part E: Find the velocity of B.

Homework Answers

Answer #1

Blocks A (mass 5.50 kg ) = mA

and

B (mass 13.00 kg ) = mB

block B is at rest VB = 0

block A is moving toward it at 3.00 m/s = VA

Part A )

we have U = KEtotal - KEcm  

KEtotal = 1/2 ( mA VA2 + mB VB2 )

= 0.5 X 5.5 X 32 - 0

KEtotal = 24.75 J

Vcm = mA VA + mB VB / ( mA + mB )

= 5.5 X 3 + 0 / ( 5.5 + 13 )

Vcm = 0.89 m/sec

KEcm = 1/2 ( mA + mB ) Vcm2

KEcm = 0.5 X ( 5.5 + 13 ) X 0.892

KEcm = 7.32 J

U = 24.75 J - 7.32 J

U = 17.43 J

Part B )

VA = Vcm = 0.89 m/sec

Part C )

VB = Vcm = 0.89 m/sec

Part D )

3 - 0 = VB - VA

VB = VA + 3

VA = Vcm - [ mB X 3 / ( mA + mB ) ]

VA = 0.89 - [ 13 X 3 / 18.5 ]

VA = - 1.21 m/s

Part E )

3 - 0 = VB - VA

3 - 0 = VB - (- 1.21)

VB = 3 - 1.21

VB = 1.79 m/sec

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Blocks A (mass 3.5 kg) and B (mass 5.5 kg) move on a frictionless, horizontal surface....
Blocks A (mass 3.5 kg) and B (mass 5.5 kg) move on a frictionless, horizontal surface. Initially, block B is at rest and block A is moving toward it at 2.0 m/s. The blocks are equipped with ideal spring bumpers (as in Example 8.10, Section 8.4). The collision is head-on, so all motion before and after the collision is along a straight line. (a) Find the maximum energy stored in the spring bumpers, in Joules. (b) Find the velocity of...
Blocks A (mass 5.00 kg) and B (mass 7.00 kg) move on a frictionless, horizontal surface....
Blocks A (mass 5.00 kg) and B (mass 7.00 kg) move on a frictionless, horizontal surface. Initially, block B is at rest and block A is moving toward it at 4.00 m/s. The blocks are equipped with ideal spring bumpers. The collision is head-on, so all motion before and after the collision is along a straight line. Let +x be the direction of the initial motion of block A. Find the maximum energy stored in the spring bumpers. Find the...
Two blocks are held together, with a compressed spring between them, on a horizontal frictionless surface....
Two blocks are held together, with a compressed spring between them, on a horizontal frictionless surface. When the system is released, the spring pushes the blocks apart and they then move off in opposite directions. The spring remains behind, and you can assume that all of its energy is transformed to the kinetic energy of the blocks. Find the kinetic energy of block A HomeworkUnanswered The mass of block A is 3.00 times the mass of block B, and the...
A block of mass 9.1 kg rests on a horizontal frictionless floor, and is connected to...
A block of mass 9.1 kg rests on a horizontal frictionless floor, and is connected to a vertical wall by a spring of force constant 205 N/mN/m as shown in the figure. When the spring is in its equilibrium position (neither stretched nor compressed), the block just touches a second lighter block of mass 3.4 kg at rest on the frictionless floor. The spring is now compressed by 0.12 mm (only the heavier mass is moved towards the wall) and...
Consider the following two blocks A and B with the mass of ma= 7 kg and...
Consider the following two blocks A and B with the mass of ma= 7 kg and mb = 4 kg. They are moving in the same direction along the x-axis on a horizontal frictionless surface with initial velocities vai= 30 m/s and vbi= 20 m/s. The two blocks collide head-on and there is no change in the line of motion of either object. If the collision is elastic, find the final velocity of block A.
A 2.00 kg block slides on a frictionless, horizontal surface with a speed of 5.10 m/s,...
A 2.00 kg block slides on a frictionless, horizontal surface with a speed of 5.10 m/s, until colliding head-on with, and sticking to, a 1.00 kg block at rest. A) Find the speed of the combination after the collision. B) The two blocks continue to slide together until coming in contact with a horizontal spring and eventually brought to rest. If the blocks compress the spring 10.0 cm, find the spring constant of the spring. C) How much work did...
Two blocks of masses m1 = 1.50 kg and m2 = 3.00 kg are each released...
Two blocks of masses m1 = 1.50 kg and m2 = 3.00 kg are each released from rest at a height of h = 4.40 m on a frictionless track, as shown in the figure below, and undergo an elastic head-on collision. (Let the positive direction point to the right. Indicate the direction with the sign of your answer.) (a) Determine the velocity of each block just before the collision. (b) Determine the velocity of each block immediately after the...
A block with mass 0.460 kg sits at rest on a light but not long vertical...
A block with mass 0.460 kg sits at rest on a light but not long vertical spring that has spring constant 85.0 N/m and one end on the floor. a)How much elastic potential energy is stored in the spring when the block is sitting at rest on it? ANS 0.12J b) A second identical block is dropped onto the first from a height of 4.10 mm above the first block and sticks to it. What is the maximum elastic potential...
Block 1, of mass m1 = 9.70 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 9.70 kg , moves along a frictionless air track with speed v1 = 27.0 m/s . It collides with block 2, of mass m2 = 55.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Part A: Find the magnitude pi of the total initial momentum of the two-block system. Part B: Find vf, the magnitude of the final velocity of the two-block system. Part C: What...
A blue block has a mass of 0.92 kg and is stationary on a horizontal frictionless...
A blue block has a mass of 0.92 kg and is stationary on a horizontal frictionless surface. It is struck with a rubber mallet causing it to slide with a speed of 3.1 m/s on the horizontal surface. The mallet is in contact with the block for 23 milliseconds. The blue block collides with a red block with a mass of 0.75 kg and the two blocks stick together. The two blocks slide up a long smooth incline and come...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT