Question

12). A planet of mass 34,000 kg is orbiting around the Sun in a circular path...

12). A planet of mass 34,000 kg is orbiting around the Sun in a circular path so that it currently is 2x10^11 m from the Sun and traveling at 20 km/s. Six months later, the planet is 0.6x10^11 m from the Sun. If we assume angular momentum is conserved, how fast is it orbiting?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A planet of mass ?=4.55×1024 kg is orbiting in a circular path a star of mass...
A planet of mass ?=4.55×1024 kg is orbiting in a circular path a star of mass ?=8.55×1029 kg . The radius of the orbit is ?=1.75×107 km . What is the orbital period (in Earth days) of the planet ?planet ?
Show that the angular momentum of a planet orbiting the Sun is conserved (neglect any perturbing...
Show that the angular momentum of a planet orbiting the Sun is conserved (neglect any perturbing forces from other planets and assume Newton’s law of gravitation).
A planet is in a circular orbit around the sun. Use Newton's law of gravity and...
A planet is in a circular orbit around the sun. Use Newton's law of gravity and his second law of motion to calculate the period of the planet (in day). Data: Mass of sun = 1.989 e+30 kg; Mass of planet = 6.0 e+24 kg; Orbit radius = 1.496 e+11 m.
There is heavy star treated to be at rest and a small planet orbiting around it....
There is heavy star treated to be at rest and a small planet orbiting around it. Only force between the star and a planet is central force of form F(r) = -ar", where r is a distance between star and a planet, a ER+, and n E R. Since the problem is spherically symmetric, total angular momentum is conserved, so orbit is embedded in some plane. What is a greatest lower bound of n for this planet to have a...
Planet X has two moons orbiting in circular orbit around it. The mass of the first...
Planet X has two moons orbiting in circular orbit around it. The mass of the first moon is twice the mass of the second moon. The radius of the circular orbit of the first moon is twice the radius of the second moon. If the first moon’s orbital velocity is 8000 m/s, what is the orbital velocity of the second moon?
Suppose a 1300-kg Tesla ends up orbiting some faraway planet of mass 2.8 * 1024 kg....
Suppose a 1300-kg Tesla ends up orbiting some faraway planet of mass 2.8 * 1024 kg. If that planet's radius is 6,200 km, and if the Tesla arrived with a velocity relative to the planet of 5,200 m/s, and if the orbit were circular, how high above the planet's ground, in kilometers, would the Tesla orbit? use G = 6.674*10-11 Nm2/kg2
Astronomers discover a planet orbiting around another star. The star is very much like our Sun,...
Astronomers discover a planet orbiting around another star. The star is very much like our Sun, and the planet is almost a twin to Jupiter. The planet has the same mass as Jupiter, is the same distance from its star as Jupiter is from our Sun (5.2 AU), has the same orbital period (12 years), is the same temperature, and has the same density and chemical composition as Jupiter. However, when we take a close up picture of the planet,...
A planet with mass 8 × 1024 kg orbits a sun with a period of 1...
A planet with mass 8 × 1024 kg orbits a sun with a period of 1 Earth's years. The speed of the planet around that sun is constant and |v|= 46800 m/s. What is the mass of that sun?
An object with a mass of 500 kg is orbiting planet X with a speed of...
An object with a mass of 500 kg is orbiting planet X with a speed of 1540 m/s. Planet X has a mass of 1.35 x 1023 kg and a radius of 2.58 x 106 m. Calculate the height of the object above the surface of planet X. G = 6.67 x 10-11 Nm2/kg2. express your answer with the appropriate units. What is the gravitational force experienced by the object due to planet X. G = 6.67 x 10-11 Nm2/kg2....
A planet has a circular orbit around a star of mass M. However, the star just...
A planet has a circular orbit around a star of mass M. However, the star just explodes, projecting its outer envelope at a much greater speed than that of the planet in orbit. Its lost mass can, therefore, be considered as having been lost instantaneously. What remains of the star has a mass M ', always greater than that of the planet. What is the eccentricity of the planet's orbit after the explosion? You can neglect the force exerted on...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT