Question

A long, uniform rod of length  0.510 mm and is rotating in a circle on a frictionless...

A long, uniform rod of length  0.510 mm and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.4 rad/srad/s and a moment of inertia about the axis of 2.70×10−3 kg⋅m2kg⋅m2 . An insect initially standing on the rod at the axis of rotation decides to walk to the other end of the rod. When the insect has reached the end of the rod and sits there, its tangential speed is 0.104 m/sm/s . The insect can be treated as a point mass.

a) Find the mass of the rod? Express your answer with the appropriate units.

b) Find the mass of the insect? Express your answer with the appropriate units.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A thin uniform rod has a length of 0.490 m and is rotating in a circle...
A thin uniform rod has a length of 0.490 m and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.37 rad/s and a moment of inertia about the axis of 3.50×10−3 kg⋅m2 . A bug initially standing on the rod at the axis of rotation decides to crawl out to the other end of...
A thin uniform rod has a length of 0.430 m and is rotating in a circle...
A thin uniform rod has a length of 0.430 m and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.32 rad/s and a moment of inertia about the axis of 3.20×10−3 kg⋅m2 . A bug initially standing on the rod at the axis of rotation decides to crawl out to the other end of...
A thin rod has a length of 0.380 m and rotates in a circle on a...
A thin rod has a length of 0.380 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.428 rad/s and a moment of inertia of 1.31 x 10 −3 kg·m 2 . A bug standing on the axis decides to crawl out to the other end of the rod. When the bug (whose mass is 5.00 x...
A thin rod has a length of 0.380 m and rotates in a circle on a...
A thin rod has a length of 0.380 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.428 rad/s and a moment of inertia of 1.31 x 10 −3 kg·m 2 . A bug standing on the axis decides to crawl out to the other end of the rod. When the bug (whose mass is 5.00 x...
A uniform rod of mass 190 g and length 100 cm is free to rotate in...
A uniform rod of mass 190 g and length 100 cm is free to rotate in a horizontal plane around a fixed vertical axis through its center, perpendicular to its length. Two small beads, each of mass 18 g, are mounted in grooves along the rod. Initially, the two beads are held by catches on opposite sides of the rod's center, 18 cm from the axis of rotation. With the beads in this position, the rod is rotating with an...
A uniform rod of mass 250 g and length 75 cm is free to rotate in...
A uniform rod of mass 250 g and length 75 cm is free to rotate in a horizontal plane around a fixed vertical axis through its center, perpendicular to its length. Two small beads, each of mass 25 g, are mounted in grooves along the rod. Initially, the two beads are held by catches on opposite sides of the rod’s center, 9 cm from the axis of rotation. With the beads in this position, the rod is rotating with an...
Uniform rod with length 6.6 m and mass 9.2 kg is rotating about an axis passing...
Uniform rod with length 6.6 m and mass 9.2 kg is rotating about an axis passing distance 4 m from one of its ends. The moment of inertia of the rod about this axis (in kg m2) is
thick rod is rotating (without friction) about an axis that is perpendicular to the rod and...
thick rod is rotating (without friction) about an axis that is perpendicular to the rod and passes through its center. The rotational inertia of the rod is 1.8 kg•m2. A 4.2-kg cat is standing at the center of the rod. When the cat is at the center of the rod, the angular speed is 4.8 rad/s. The cat then begins to walk along the rod away from the center of the rod. The cat stops at a distance of 0.4...
A uniform thin rod of length 0.56 m and mass 3.2 kg can rotate in a...
A uniform thin rod of length 0.56 m and mass 3.2 kg can rotate in a horizontal plane about a vertical axis through its center. The rod is at rest when a 3.5 g bullet traveling in the rotation plane is fired into one end of the rod. As viewed from above, the bullet's path makes angle θ = 60° with the rod. If the bullet lodges in the rod and the angular velocity of the rod is 12.0 rad/s...
A uniform rod of mass M and length L is pivoted at one end. The rod...
A uniform rod of mass M and length L is pivoted at one end. The rod is left to freely rotate under the influence of its own weight. Find its angular acceleration α when it makes an angle 30° with the vertical axis. Solve for M=1 Kg, L=1 m, take g=10 m s-2. Your answer in X.X rad s-2. Hint: Find the center of mass for the rod, and calculate the torque, then apply Newton as τ= Ι·α