Question

A square plastic chunk with mass 0.750 kg is suspended from the lower end of a...

A square plastic chunk with mass 0.750 kg is suspended from the lower end of a light cord that is 1.76 m long. The plastic chunk is stay still in the beginning without any motion. A bullet with mass 0.0116 kg is on the way to the plastic chunk with a horizontal velocity Vo. The bullet hits the plastic chunk and then embedded in it. After collision, combined bullet and plastic chunk swings on the end of the cord. When the plastic chunk has risen a vertical height of 0.800 m , the tension in the cord is 4.60 N .

What was the initial velocity Vo of the bullet?

Homework Answers

Answer #1

As V1= 0.134V0

V0=5.16/0.134

V0=38.51m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A small wooden block with mass 0.750 kg is suspended from the lower end of a...
A small wooden block with mass 0.750 kg is suspended from the lower end of a light cord that is 1.72 m long. The block is initially at rest. A bullet with mass 0.0136 kg is fired at the block with a horizontal velocity v0. The bullet strikes the block and becomes embedded in it. After the collision the combined object swings on the end of the cord. When the block has risen a vertical height of 0.700 m ,...
A small wooden block with mass 0.750 kg is suspended from the lower end of a...
A small wooden block with mass 0.750 kg is suspended from the lower end of a light cord that is 1.66 m long. The block is initially at rest. A bullet with mass 0.0128 kg is fired at the block with a horizontal velocity v0. The bullet strikes the block and becomes embedded in it. After the collision the combined object swings on the end of the cord. When the block has risen a vertical height of 0.775 m ,...
1. You shoot a bullet of mass m=0.025 kg into a wood box of mass M=1.7...
1. You shoot a bullet of mass m=0.025 kg into a wood box of mass M=1.7 kg which initially is at rest. After the impact, the wood with embedded bullet moves to the flat top of the hill, and it continues its motion on the top. Initial speed of the bullet before collision is vo=560 m/s. The height of the hill is h=0.3 m. The surface has no friction. At what speed the wooden block moves on the top of...
A block of mass M = 5.80 kg, at rest on a horizontal frictionless table, is...
A block of mass M = 5.80 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 6250 N/m. A bullet of mass m = 8.30 g and velocity of magnitude 570 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the collision and (b) the...
A block of mass M = 5.60 kg, at rest on a horizontal frictionless table, is...
A block of mass M = 5.60 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 5860 N/m. A bullet of mass m = 9.20 g and velocity ModifyingAbove v With right-arrow of magnitude 660 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the...
A 0.180-kg ball on the end of a------ meter long cord (neglect the mass of the...
A 0.180-kg ball on the end of a------ meter long cord (neglect the mass of the cord) is swung in a vertical circle. The ball passes the top point of the arc at velocity v2 = 3.88-m/s. The tension at the bottom is FT2 is------- Newtons
A 5.00 kg toolbox is suspended from the end of a virtually mass-less vertical string. A...
A 5.00 kg toolbox is suspended from the end of a virtually mass-less vertical string. A time-dependent upward force is applied to the upper portion of the string, and the toolbox moves upward with a velocity magnitude that varies such that: v(t) = (.800 m/s^3)t^2 + (4.00 m/s^2)t Part 1: How long does it take to reach a velocity of 15 m/s Part 2: What is the Tension in the string when the object has a velocity of 15m/s? For...
An object with a mass of m = 5.5 kg is attached to the free end...
An object with a mass of m = 5.5 kg is attached to the free end of a light string wrapped around a reel of radius R = 0.260 m and mass of M = 3.00 kg. The reel is a solid disk, free to rotate in a vertical plane about the horizontal axis passing through its center as shown in the figure below. The suspended object is released from rest 6.40 m above the floor. (a) Determine the tension...
A block of mass M = 4.80 kg, at rest on a horizontal frictionless table, is...
A block of mass M = 4.80 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 6280 N/m. A bullet of mass m = 9.80 g and velocity   of magnitude 650 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the collision and (b) the...
A stuntman whose mass is 70 kg swings from the end of a 4.0-m-long rope along...
A stuntman whose mass is 70 kg swings from the end of a 4.0-m-long rope along the arc of a vertical circle. Assuming he starts from rest when the rope is horizontal, find the tensions in the rope that are required to make him follow his circular path (a) at the beginning of his motion, (b) at a height of 1.5 m above the bottom of the circular arc, and (c) at the bottom of the arc
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT