Question

A charge of +1.00 millicoulomb is evenly sprayed over the surface of an insulating sphere of...

  1. A charge of +1.00 millicoulomb is evenly sprayed over the surface of an insulating sphere of radius 10 cm whose center is at position -1.00 m i . A point charge of

+1.00 millicoulomb is at position +1.00 m i . A point charge of -1.00 millicoulomb

is at the origin. What is the ratio of the magnitude of the electrostatic force due to the conducting sphere on the negative charge to the magnitude of the electric force due to

the positive point charge on the negative charge?

  1. What is the resultant electrostatic force on the negative point charge in (1)?

  1. What is the resultant electrostatic force on the positive point charge in (1)?

  1. What is the electric field at the center of the sphere in (1)?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A solid insulating sphere of radius a = 2 cm carries a net positive charge Q...
A solid insulating sphere of radius a = 2 cm carries a net positive charge Q = 9 nC uniformly distributed throughout its volume. A conducting spherical shell of inner radius b = 4 cm and outer radius c = 6 cm is concentric with the solid sphere and carries an initial net charge 2Q. Find: a. the charge distribution on the shell when the entire system is in electrostatic equilibrium. b. theelectricfieldatpoint:(i)AwithrA =1cm,(ii)BwithrB =3cm,(iii)CwithrC =5cm from the center of...
An excess positive charge Q is uniformly distributed throughout the volume of an insulating solid sphere...
An excess positive charge Q is uniformly distributed throughout the volume of an insulating solid sphere of radius R = 5.0cm. The magnitude of the bold E with bold rightwards harpoon with barb upwards on top-field at a point 10.0cm from the center of the sphere is given to be 4.5x10^6 N/C. a. What is the value (in units of μC) of charge Q? b. What is the magnitude of the -field at the surface of the sphere? c. What...
Consider an insulating sphere of radius 5 cm surrounded by a conducting sphere of inner radius...
Consider an insulating sphere of radius 5 cm surrounded by a conducting sphere of inner radius 22 cm and outer radius 25 cm. Furthermore, suppose that the electric field at a point 13 cm from the center is measured to be 1540 N/C radially inward while the electric field at a point 44 cm from the center is 90 N/C radially outward. 1. Find the charge on the insulating sphere. Answer in units of C. 2.Find the net charge on...
A net electric charge of 2.87 ?C is placed on a conducting sphere. The radius of...
A net electric charge of 2.87 ?C is placed on a conducting sphere. The radius of the sphere is R = 20.5 cm. What is the magnitude of the electric field at a distance of d1 = 26.8 cm away from the center of the sphere? Tries 0/12 What is the magnitude of the electric field at a distance of d2 = 14.2 cm away from the center of the sphere? Tries 0/12 The same amount of electric charge is...
A positive charge +Q is distributed uniformly throughout the volume of an insulating sphere with radius...
A positive charge +Q is distributed uniformly throughout the volume of an insulating sphere with radius R. Find the electric potential V at a point P a distance r from the center of the sphere. Plot the electric potential V vs. the distance r from the center of the sphere for 0 < r < 2R
A charge is spread out uniformly over a small non-conducting sphere. The small sphere shares a...
A charge is spread out uniformly over a small non-conducting sphere. The small sphere shares a center with a larger spherical shell with an inner radius of 6 ?? and an outer radius of 12 ??. a) Using Gauss’ Law, what is the magnitude of the charge on the nonconducting sphere if the field from the sphere is measured to be 8200 ?/? when 0.5 ?? from the center? b) What is the surface charge density on the inside of...
A solid insulating sphere of radius a = 5 cm is fixed at the origin of...
A solid insulating sphere of radius a = 5 cm is fixed at the origin of a co-ordinate system as shown. The sphere is uniformly charged with a charge density ρ = -244 μC/m3. Concentric with the sphere is an uncharged spherical conducting shell of inner radius b = 13 cm, and outer radius c = 15 cm. 1)What is Ex(P), the x-component of the electric field at point P, located a distance d = 32 cm from the origin...
1. A point charge - and a conducting solid sphere of charge density +a(C/m?) and radius...
1. A point charge - and a conducting solid sphere of charge density +a(C/m?) and radius a are shown in Figure I (centers of both charges are al 2a distance from the origin o) a) Draw the electric field vectors at the origin 0. (4 pts) b) Determine the direction and magnitude of the NET electric field E, at origin O. (11 pts) +(C/m?) e) Calculate the NET electric potential V at the origin O(10 pts)
A nonconducting solid sphere of radius 2.80 cm carries a uniformly distributed positive charge of 6.60×10-9...
A nonconducting solid sphere of radius 2.80 cm carries a uniformly distributed positive charge of 6.60×10-9 C. Calculate the magnitude of the electric field at a point 1.60 cm away from the center of the sphere. Calculate the magnitude of the electric field at a point 3.60 cm away from the center of the sphere. Assume that the sphere is conducting. Calculate the magnitude of the electric field at a point 1.60 cm away from the center of the sphere....
An insulating sphere of radius a has charge density p(r) = P0r^2, where P0 is a...
An insulating sphere of radius a has charge density p(r) = P0r^2, where P0 is a constant with appropriate units. The total charge on the sphere is -3q. Concentric with the insulating sphere is a conducting spherical shell with inner radius b > a and utter radius. The total charge on the shell is +2q. Determine a. the magnitude of the electric field at the following locations: (i) r < a, (ii) a < r < b, (iii) b <...