Question

A block, initially at rest, feels a constant net force of 75 N for a distance...

A block, initially at rest, feels a constant net force of 75 N for a distance of 0.60 m along the floor. Ignore friction. A.) what is the final kinetic energy of the block? B.) if the block has a mass of 0.020 kg what is its final speed?

Homework Answers

Answer #1

Given:

A block, initially at rest, feels a constant net force of 75 N for a distance of 0.60 m along the floor. Ignore friction. A.) what is the final kinetic energy of the block? B.) if the block has a mass of 0.020 kg what is its final speed?

From conservation of energy , the work done on the block is equal to the change in kinetic energy :

A.)   ===> But , the initial kinetic energy is

. We thus have the final kinetic energy is :

  --- SOLUTION .

B.) If the mass is   , we can compute the final speed :

  ===>

===>

===> The final speed is :

   --- SOLUTION .

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A horizontal force of magnitude 32.5 N pushes a block of mass 4.05 kg a distance...
A horizontal force of magnitude 32.5 N pushes a block of mass 4.05 kg a distance of 3.00 m across a floor, where the coefficient of kinetic friction is 0.600. (a) How much work is done by that applied force on the block-floor system? (b) During that displacement, the thermal energy of the block increases by 36.0 J. What is the increase in thermal energy of the floor? (c) What is the increase in the kinetic energy of the block?
A 2.90 kg block on a horizontal floor is attached to a horizontal spring that is...
A 2.90 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0340 m . The spring has force constant 850 N/m . The coefficient of kinetic friction between the floor and the block is 0.42 . The block and spring are released from rest and the block slides along the floor. Part A What is the speed of the block when it has moved a distance of 0.0190 m from its initial position?...
A 6.0-kg block initially at rest is pulled to the right along a horizontal surface with...
A 6.0-kg block initially at rest is pulled to the right along a horizontal surface with a force of 12 N. The force of kinetic friction is 3N. a. Draw a free-body diagram of the situation. b. Find the work done by the 12 N force on the block to move the block 3m? c. Find the work done by the force of friction on the block when the block was moved 3m? d. Use the work-energy principle to find...
A 0.400kg0.400kg block is initially at rest on a horizontal surface, and is attached to an...
A 0.400kg0.400kg block is initially at rest on a horizontal surface, and is attached to an initially unstreteched spring with a force constant of 2.00N/m2.00N/m. The coefficient of kinetic friction between the block and the surface is 0.4000.400. A constant force of 2.30N2.30N to the right is applied to the block. (A) Draw a free body diagram showing all forces on the block as it moves to the right. Determine (B) the initial Kinetic Energy of the block:  J, and (C)...
A 0.400kg0.400kg block is initially at rest on a horizontal surface, and is attached to an...
A 0.400kg0.400kg block is initially at rest on a horizontal surface, and is attached to an initially unstreteched spring with a force constant of 2.00N/m2.00N/m. The coefficient of kinetic friction between the block and the surface is 0.4000.400. A constant force of 2.30N2.30N to the right is applied to the block. (A) Draw a free body diagram showing all forces on the block as it moves to the right. Determine (B) the initial Kinetic Energy of the block:  J, and (C)...
An 8.0 kg block initially at rest is pulled to the right by a 12 N...
An 8.0 kg block initially at rest is pulled to the right by a 12 N force on a horizontal surface. If there is a constant friction force of 4.0 N, calculate the speed of the block after it has moved 3.0 m.
A block of mass m = 3.57 kg is drawn at a constant speed of 4.06...
A block of mass m = 3.57 kg is drawn at a constant speed of 4.06 m along a horizontal floor by a rope exerting a constant force of 7.68 N at an angle of 15.0˚ above the horizontal. Determine the work done on the block by the rope, the work done by friction and the coefficient of kinetic friction between the floor and block.
A 6.53-kg block initially at rest is pulled to the right along a horizontal surface by...
A 6.53-kg block initially at rest is pulled to the right along a horizontal surface by a constant force of 125 N applied at an angle θ above the horizontal. The coefficient of kinetic friction between the block and the horizontal surface is 0.150. At what angle θ above the horizontal surface should the force be applied to achieve the largest possible speed after the block has moved 5.00 m to the right?
20.0-kg block initially sits at rest on a rough horizontal floor. One end of a string...
20.0-kg block initially sits at rest on a rough horizontal floor. One end of a string is attached to the block. You pull on the other end of the string with a force of 40.0 N so that the string makes an angle of 30.0° with the horizontal. After pulling the block 3.00 m across the floor, it is traveling with a speed of 1.25 m/s. What is the magnitude of the force of kinetic friction exerted on the block...
A 36.5 kg box initially at rest is pushed 4.25 m along a rough, horizontal floor...
A 36.5 kg box initially at rest is pushed 4.25 m along a rough, horizontal floor with a constant applied horizontal force of 150 N. If the coefficient of friction between box and floor is 0.300, find the following. (a) the work done by the applied force J (b) the increase in internal energy in the box-floor system due to friction J (c) the work done by the normal force J (d) the work done by the gravitational force J...