Question

I start pushing a merry-go-round of radius of 1.9 meters with a tangential force of 29.8...

I start pushing a merry-go-round of radius of 1.9 meters with a tangential force of 29.8 N It has a moment of inertia of 187.7 kg m2. What is its rotational speed in rad/s after 3.85 seconds assuming it starts at rest?

Homework Answers

Answer #1

Radius of merry go round r = 1.9m.

Moment of inertia I = 187.7kg•m².

Tangential force F = 29.8N.

Let angular acceleration is α .

Now find torque about the center and balance them.

So formula for torque

T = F×r×sin∅

= 29.8×1.9×sin90° (as force is tangentially so angle between force and radius is 90°)

T = 56.62 Nm

Now formula of torque in the term of moment of inertia and angular acceleration.

T = I×α

s​​o I×α = 56.62

α = 56.62/187.7

So angular acceleration ×α = 0.3rad/s²

Now formula for angular speed v

v = u + t×α { where u is initial speed in our 0 and t is time = 3.85s}

v = 3.85×0.3

V = 1.16rad/s

So rotational speed after 3.85s is 1.16rad/s.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A merry-go-round with a a radius of R = 1.75 m and moment of inertia I...
A merry-go-round with a a radius of R = 1.75 m and moment of inertia I = 182 kg-m2 is spinning with an initial angular speed of ω = 1.4 rad/s in the counter clockwise direection when viewed from above. A person with mass m = 71 kg and velocity v = 4.4 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round. 1)What...
A merry-go-round has a radius of 3.12m and a moment of inertia of 2800kg m2 about...
A merry-go-round has a radius of 3.12m and a moment of inertia of 2800kg m2 about the vertical axis through the center. It hsd wd40 so it turns without friction. A child applied a tangential force of 14 N for 13 s. The merry-go-round starts at rest. What is the work done by the child during the 13s?
Consider a father pushing a child on a playground merry-go-round. The system has a moment of...
Consider a father pushing a child on a playground merry-go-round. The system has a moment of inertia of 84.4 kg · m2. The father exerts a force on the merry-go-round perpendicular to its 1.50 m radius to achieve a torque of 375 N · m. (a) Calculate the rotational kinetic energy (in J) in the merry-go-round plus child when they have an angular velocity of 23.2 rpm. (b) Using energy considerations, find the number of revolutions the father will have...
A child exerts a tangential 58.5 N force on the rim of a disk-shaped merry-go-round with...
A child exerts a tangential 58.5 N force on the rim of a disk-shaped merry-go-round with a radius of 2.99 m. If the merry-go-round starts at rest and acquires an angular speed of 0.1250 rev/s in 5.00 s, what is its mass?
A playground merry-go-round has a moment of inertia of 600 kg m2. When the merry-go-round is...
A playground merry-go-round has a moment of inertia of 600 kg m2. When the merry-go-round is at rest, a 20 kg boy runs at 5.9 m/s along a line tangential to the rim and jumps on, landing on the rim a distance of 3.0 m from the rotation axis of the merry-go-round. The angular velocity of the merry-go-round is then: A.1.2 rad/s B.0.38 rad/s C.0.45 rad/s D.0.56 rad/s E.0.72 rad/s
A merry-go-round with a a radius of R = 1.84 m and moment of inertia I...
A merry-go-round with a a radius of R = 1.84 m and moment of inertia I = 186 kg-m2 is spinning with an initial angular speed of ω = 1.55 rad/s in the counter clockwise direection when viewed from above. A person with mass m = 51 kg and velocity v = 5 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round. What...
A merry-go-round with a a radius of R = 1.84 m and moment of inertia I...
A merry-go-round with a a radius of R = 1.84 m and moment of inertia I = 206 kg-m2 is spinning with an initial angular speed of ? = 1.54 rad/s in the counter clockwise direection when viewed from above. A person with mass m = 66 kg and velocity v = 4.5 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round. 1)...
A 40 kg child (point mass) rides on the outer edge of a merry-go-round, which is...
A 40 kg child (point mass) rides on the outer edge of a merry-go-round, which is a large disk of mass 150 kg and radius 1.5 m. The merry-go-round spins with an angular velocity of 12 rpm. What is the merry-go-round’s angular velocity in radians per second (rad/s)? What is the total rotational inertia (moment of inertia) of the child and merry-go-round together? What is the rotational kinetic energy (in joules) of the merry-go-round and child together? What magnitude of...
A merry-go-round with a a radius of R = 1.66 m and moment of inertia I...
A merry-go-round with a a radius of R = 1.66 m and moment of inertia I = 217 kg-m2 is spinning with an initial angular speed of ω = 1.57 rad/s in the counter clockwise direection when viewed from above. A person with mass m = 61 kg and velocity v = 4.8 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round. 4)...
A merry-go-round with a a radius of R = 1.62 m and moment of inertia I...
A merry-go-round with a a radius of R = 1.62 m and moment of inertia I = 215 kg-m2 is spinning with an initial angular speed of ω = 1.52 rad/s in the counter clockwise direection when viewed from above. A person with mass m = 56 kg and velocity v = 4.6 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round. What...