Question

a) Assume that there is a long ideal solenoid with 120 turns/cm. It carries a current...

a) Assume that there is a long ideal solenoid with 120 turns/cm. It carries a current i= 2 A and it has a diameter 2 cm and a length 5 m. Find the uniform magnetic field inside the solenoid.

Select one:

150 mT

0,30 mT

2 mT

30 mT

9.5 μT

b) Insert a single circular coil at the center of the long ideal solenoid that is mentioned at part (a). Solenoid and coil are coaxial. Coil has diameter 0.5 cm. Now the current in the solenoid decreases steadily from 2 A to 1.0 A in a time interval 20 ms. Find the magnitude of emf induced in the coil while the current is changing?

Select one:

a. 0.01480 mV

b. 0.07402 mV

c. 0.05922 mV

d. 0.00015 mV

e. 0.00074 mV

c) Now, construct an RL circuit using an ideal battery that has potential difference 5 V, one resistor with R = 2 Ω and the solenoid that has same shape with one mentioned at part (a). Find the potential difference across resistor at 2 ms? (Hint: First calculate the inductance)

Select one:

0.07 V

0.03 V

0.05 V

0.01 V

0.09 V

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a)Assume that there is a long ideal solenoid with 120 turns/cm. It carries a current i=...
a)Assume that there is a long ideal solenoid with 120 turns/cm. It carries a current i= 2 A and it has a diameter 2 cm and a length 5 m. Find the uniform magnetic field inside the solenoid. b) Insert a single circular coil at the center of the long ideal solenoid that is mentioned at part (a). Solenoid and coil are coaxial. Coil has diameter 0.5 cm. Now the current in the solenoid decreases steadily from 2 A to...
a) Assume that there is a long ideal solenoid with 120 turns/cm. It carries a current...
a) Assume that there is a long ideal solenoid with 120 turns/cm. It carries a current i= 2 A and it has a diameter 2 cm and a length 5 m. Find the uniform magnetic field inside the solenoid. c) Now, construct an RL circuit using an ideal battery that has potential difference 5 V, one resistor with R = 2 Ω and the solenoid that has same shape with one mentioned at part (a). Find the potential difference across...
1. A long solenoid with a diameter of 10 cm has 200 turns/cm. If the current...
1. A long solenoid with a diameter of 10 cm has 200 turns/cm. If the current is decreased at a rate of 3 mA/s, what is the magnitude of the induced electric field (in mV/m), 6 cm from the axis of the solenoid? A. 0.2 B. 0.1 C. 0.3 D. 0.4 2. A series RL circuit with R = 40 Ω and L = 10 H has a constant voltage V = 100 V applied at t = 0 by...
A long solenoid has n = 390 turns per meter and carries a current given by...
A long solenoid has n = 390 turns per meter and carries a current given by I = 29.0(1 − e−1.60t ), where I is in amperes and t is in seconds. Inside the solenoid and coaxial with it is a coil that has a radius of R = 6.00 cm and consists of a total of N = 250 turns of fine wire (see figure below). What emf is induced in the coil by the changing current? (Use the...
A very long, straight solenoid with a diameter of 3.00 cm is wound with 40 turns...
A very long, straight solenoid with a diameter of 3.00 cm is wound with 40 turns of wire per centimeter, and the windings carry a current of  0.225 A. A second coil having N turns and a larger diameter is slipped over the solenoid so that the two are coaxial. The current in the solenoid is ramped down to zero over a period of 0.60 s. a) What average emf is induced in the second coil if it has a diameter...
A very long, straight solenoid with a diameter of 3.00 cm is wound with 40 turns...
A very long, straight solenoid with a diameter of 3.00 cm is wound with 40 turns of wire per centimeter, and the windings carry a current of 0.225 AA . A second coil having N turns and a larger diameter is slipped over the solenoid so that the two are coaxial. The current in the solenoid is ramped down to zero over a period of 0.6 s .1.What average emf is induced in the second coil if it has a...
A very long, straight solenoid with a diameter of 3.00 cm is wound with 40 turns...
A very long, straight solenoid with a diameter of 3.00 cm is wound with 40 turns of wire per centimeter, and the windings carry a current of 0.265 A . A second coil having N turns and a larger diameter is slipped over the solenoid so that the two are coaxial. The current in the solenoid is ramped down to zero over a period of 0.2 s . What average emf is induced in the second coil if it has...
Constants A very long, straight solenoid with a diameter of 3.00 cm is wound with 40...
Constants A very long, straight solenoid with a diameter of 3.00 cm is wound with 40 turns of wire per centimeter, and the windings carry a current of 0.245 A . A second coil having N turns and a larger diameter is slipped over the solenoid so that the two are coaxial. The current in the solenoid is ramped down to zero over a period of 0.3 s . What average emf is induced in the second coil if it...
A 370 turn solenoid of length 37.0 cm and radius 3.30 cm carries a current of...
A 370 turn solenoid of length 37.0 cm and radius 3.30 cm carries a current of 5.20 A. Find the following. (a) the magnetic field strength inside the coil at its midpoint mT (b) the magnetic flux through a circular cross-sectional area of the solenoid at its midpoint T · m2
A long solenoid has a diameter 12.7 cm. When a current i is passed through its...
A long solenoid has a diameter 12.7 cm. When a current i is passed through its winding, a uniform magnetic field B = 38.2 mT is produced in its interior. By decreasing i, the field is caused to decrease at the rate 6.71 mT/s. Calculate the magnitude of the induced electric field (a) 1.28 cm from the axis of the solenoid. V/m (b) 7.79 cm from the axis of the solenoid V/m