Question

A 1055-kg van, stopped at a traffic light, is hit directly in the rear by a...

A 1055-kg van, stopped at a traffic light, is hit directly in the rear by a 730-kg car traveling with a velocity of +2.45 m/s. Assume that the transmission of the van is in neutral, the brakes are not being applied, and the collision is elastic. What is the final velocity of each vehicle?

Homework Answers

Answer #1

Given that,

m1 = 1055 kg

u1 = 0

m2 = 730 kg

u2 = 2.45 m/s

Let, final final velocities are v1 and v2.

From conservation of momentum,

m1u1 + m2u2 = m1v1 + m2v2 .........(1)

From conservation of energy,

(1/2)m1u1^2 + (1/2)m2u2^2 = (1/2)m1v1^2 + (1/2)m2v2^2 ........(2)

By solving eq (1) and (2),

v1 = (m1 - m2 / m1 + m2)*u1 + (2m1 / m1 + m2)*u2

Since u1 = 0,

v1 = (2m1 / m1 + m2)*u2

v1 = (2*1055 / 1055 + 730)*2.45

v1 = 2.896 m/s

v2 =  (m2 - m1 / m1 + m2)*u2 + (2m1 / m1 + m2)*u1

Since, u1 = 0

v2 = (m2 - m1 / m1 + m2)*u2

v2 = (730 - 1055 / 1055+730)*2.45

v2 = -0.446 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 730-kg car stopped at an intersection is rear-ended by a 1710-kg truck moving with a...
A 730-kg car stopped at an intersection is rear-ended by a 1710-kg truck moving with a speed of 14.5 m/s . If the car was in neutral and its brakes were off, so that the collision is approximately elastic, find the final speed of the truck. Find the final speed of the car.
A 801 kg car stopped at an intersection is rear-ended by a 1550 kg truck moving...
A 801 kg car stopped at an intersection is rear-ended by a 1550 kg truck moving with a speed of 16.0 m/s. If the car was in neutral and its brakes were off, so that the collision is approximately elastic, find the final speed of both vehicles after the collision. m/s (car) m/s (truck)
An 1100-kg truck is stopped at a traffic light, when a 950-kg car going at 24.0...
An 1100-kg truck is stopped at a traffic light, when a 950-kg car going at 24.0 m/s rear-ends it. If the two vehicles stick together and move in the same direction the car had been going, find: (a) the speed of the combined wreck just aftedre the collision, (b) the amount of kinetic energy lost in the collision.
truck with a mass of 1840 kg and moving with a speed of 17.0 m/s rear-ends...
truck with a mass of 1840 kg and moving with a speed of 17.0 m/s rear-ends a 732 kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. (a) Calculate the initial momentum of the truck (in kg m/s). kg m/s (b) Calculate the final velocities (in m/s) for the truck and the car. vtf = m/s vcf...
A truck with a mass of 1430 kg and moving with a speed of 17.0 m/s...
A truck with a mass of 1430 kg and moving with a speed of 17.0 m/s rear-ends a 821 kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. Find the speed of both vehicles after the collision in meters per second. Vcar= ___ m/s Vtruck= ___ m/s
A truck with a mass of 1420 kg and moving with a speed of 12.0 m/s...
A truck with a mass of 1420 kg and moving with a speed of 12.0 m/s rear-ends a 649 kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. Find the speed of both vehicles after the collision in meters per second. vcar = _______ m/s vtruck = _______m/s
A truck with a mass of 1730 kg and moving with a speed of 14.0 m/s...
A truck with a mass of 1730 kg and moving with a speed of 14.0 m/s rear-ends a 743-kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. Find the speed of both vehicles after the collision. vcar = ____m/s vtruck = ____m/s
A 800-kg sports car collides into the rear end of a 2900-kg SUV stopped at a...
A 800-kg sports car collides into the rear end of a 2900-kg SUV stopped at a red light. The bumpers lock, the brakes are locked, and the two cars skid forward 2.9 m before stopping. The police officer, estimating the coefficient of kinetic friction between tires and road to be 0.80, calculates the speed of the sports car at
A 950-kg sports car collides into the rear end of a 2400-kg SUV stopped at a...
A 950-kg sports car collides into the rear end of a 2400-kg SUV stopped at a red light. The bumpers lock, the brakes are locked, and the two cars skid forward 2.7 m before stopping. The police officer, estimating the coefficient of kinetic friction between tires and road to be 0.80, calculates the speed of the sports car at impact. What was the speed sports car at impact?
A 930 kg sports car collides into the rear end of a 2300 kg SUV stopped...
A 930 kg sports car collides into the rear end of a 2300 kg SUV stopped at a red light. The bumpers lock, the brakes are locked, and the two cars skid forward 3.1 m before stopping. The police officer, knowing that the coefficient of kinetic friction between tires and road is 0.80, calculates the speed of the sports car at impact. What was that speed?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT