Question

A rod of length l=0.8m and mass M= 3.7kg joins two particles with masses m1 =4.5kg...

A rod of length l=0.8m and mass M= 3.7kg joins two particles with masses m1 =4.5kg and m2 = 2.8kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 3.5 m/s. (Moment of inertia of a uniform rod rotating about its center of mass

I=

1
12

M l2

a) Calculate the total moment of inertia of the system

b) What is the magnitude of the angular momentum about the origin?

c)If the length of the rod reduces to l=0.5m. What will be the final angular speed ωf?

)

Homework Answers

Answer #1

I have used I=mR^2 for a pont like mass and for rod I=Ml^2/12, Also conservation of angular momentam is applied for finding final angular velocity.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg...
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg and m2 = 2.8kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 3.5 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) angularmomentum a) Calculate the total moment of inertia of the system I...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg and m2 = 5.0kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 12.9 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) a) Calculate the total moment of inertia of the system I =...
(a) A light, rigid rod of length ℓ = 1.00 m joins two particles, with masses...
(a) A light, rigid rod of length ℓ = 1.00 m joins two particles, with masses m1 = 4.00 kg and m2 = 3.00 kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod (see figure below). Determine the angular momentum of the system about the origin when the speed of each particle is 4.80 m/s. (Enter the magnitude to at least two decimal places in kg · m2/s.) Two masses...
8%) Problem 15:   A rod of mass M = 3.5 kg and length L can rotate...
8%) Problem 15:   A rod of mass M = 3.5 kg and length L can rotate about a hinge at its left end and is initially at rest. A putty ball of mass m = 55 g, moving with speed v = 6.68 m/s, strikes the rod at angle θ = 59° from the normal at a distance D = 2/3 L, where L = 1.25 m, from the point of rotation and sticks to the rod after the collision....
A rod of length 10 m rotates about an axis perpendicular to its length and through...
A rod of length 10 m rotates about an axis perpendicular to its length and through its center. Two particles of masses m1 = 4.0 kg and m2 = 3.0 kg are connected to the ends of the rod. What is the angular momentum of the system if the speed of each particle is 2.5 m/s?
A rod of length 10 m rotates about an axis perpendicular to its length and through...
A rod of length 10 m rotates about an axis perpendicular to its length and through its center. Two particles of masses m1 = 4.0 kg and m2 = 3.0 kg are connected to the ends of the rod. What is the angular momentum of the system if the speed of each particle is 2.5 m/s?
A rigid rod of mass 5.30 kg and length of 1.50 m rotates in a vertical...
A rigid rod of mass 5.30 kg and length of 1.50 m rotates in a vertical (x,y) plane about a frictionless pivot through its center. Particles m_1 (mass=6.30 kg) and m_2 (mass=2.20 kg) are attached at the ends of the rod. Determine the size of the angular acceleration of the system when the rod makes an angle of 42.1° with the horizontal.
A thin, 1-dimensional, uniform rod of mass M and length L lies on the x axis...
A thin, 1-dimensional, uniform rod of mass M and length L lies on the x axis with one end at the origin. (a) Find its moment of inertia tensor about the origin. (b) Find the moment of inertia tensor if the rod’s center is located at the origin.
A cylindrical rod of length 2.0 m, radius 0.5 m, and mass 1.5 kg has two...
A cylindrical rod of length 2.0 m, radius 0.5 m, and mass 1.5 kg has two spheres attached on its ends. The centers of the spheres are 1.0 m from the center of the rod. The mass of each sphere is 0.66 kg. The rod is capable of rotating about an axis passing through its center and perpendicular to the plane of the page, but the set up is stationary to begin with. A small mass of value 0.19 kgmoving...
A long, thin rod of length l and mass m hangs from a pivot point about...
A long, thin rod of length l and mass m hangs from a pivot point about which it is free to swing in a vertical plane like a simple pendulum. Calculate the total angular momentum of the rod about the pivot point as a function of its instantaneous angular frequency ω. Calculate the total kinetic energy of the rod.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT