Question

In an isobaric process if the the initial volume of air is 2.3 litres at a...

In an isobaric process if the the initial volume of air is 2.3 litres at a temperature of 15°C and a pressure of 55kPa. If the final temperature is 190° C

a) The final volume

b) The mass of air

c) The work done

d) The heat transferred

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An ideal diatomic gas contracts in an isobaric process from 1.15 m3 to 0.600 m3 at...
An ideal diatomic gas contracts in an isobaric process from 1.15 m3 to 0.600 m3 at a constant pressure of 1.70 ✕ 105 Pa. If the initial temperature is 445 K, find the work done on the gas, the change in internal energy, the energy transfer Q, and the final temperature. (a) the work done on the gas (in J) (b) the change in internal energy (in J) (c) the energy transfer Q (in J) (d) the final temperature (in...
Consider one mole of air with initial temperature of 0 degrees Celicus and pressure of 1000...
Consider one mole of air with initial temperature of 0 degrees Celicus and pressure of 1000 mb. The air undergoes a polytropic process, with its volume expanded 3 times at 250 mb. Calculate: (a) The power n of the polytropic process; (b) The final temperature; (c) The change of internal energy, the work done on, and the heat absorbed by the system.
Air in a piston-cylinder device undergoes an isobaric expansion process from 280 K and 245 kPa...
Air in a piston-cylinder device undergoes an isobaric expansion process from 280 K and 245 kPa to 880 K. This is achieved by adding heat to the system under quasi-equilibrium conditions. What is the work done by the air during this process? (Use the appropriate sign convention.) What is the amount of heat transferred for this process? (Use the appropriate sign convention.) Considering the actual variation in the specific heat of air during the process, what is the change in...
Argon is stored in a container of volume 2 litres at a pressure of 3 atmospheres....
Argon is stored in a container of volume 2 litres at a pressure of 3 atmospheres. The amount of gas present is 0.2 mole The gas is allowed to expand to a final volume of 4 litres while the temperature is held constant. Find the final pressure of the gas, and (ii) the work done on the gas. Explain the significance of the sign of the work term. You may assume that argon behaves as an ideal monatomic gas. The...
Air at 1 atm and 20 0C occupies an initial volume of 1000 cm3 in a...
Air at 1 atm and 20 0C occupies an initial volume of 1000 cm3 in a cylinder. The air is confined by a piston which has a constant restraining force so that the gas pressure always remains constant. Heat is added to the air until its temperature reaches 260 0C. Calculate (a) the heat added (b) the work done by the gas, (c) the change in internal energy of the gas.
If an ideal gas starts out at a pressure of 103 kPa and a volume of...
If an ideal gas starts out at a pressure of 103 kPa and a volume of 0.0330 m3 and then ends at a pressure of 248 kPa and volume of 0.0890 m3, how much work is done if it follows an isochoric process up to the final pressure, then an isobaric expansion to the final volume? If instead it had an isobaric expansion to the final volume, followed by an isochoric process to the final pressure, how much work is...
A 2.0 mol sample of ideal gas with molar specific heat Cv = (5/2)R is initially...
A 2.0 mol sample of ideal gas with molar specific heat Cv = (5/2)R is initially at 300 K and 100 kPa pressure. Determine the final temperature and the work done on the gas when 1.6 kJ of heat is added to the gas during each of these separate processes (all starting at same initial temperature and pressure: (a) isothermal (constant temperature) process, (b) isometric (constant volume) process, and (c) isobaric (constant pressure) process. Hint: You’ll need the 1st Law...
A 0.2 m3 piston-cylinder initially contains 400 K air. A heavy frictionless piston maintains a pressure...
A 0.2 m3 piston-cylinder initially contains 400 K air. A heavy frictionless piston maintains a pressure of 500 kPa abs. Then, a weakness in the cylinder wall blows out and creates a hole. Air escapes through the hole until the piston drops far enough to cover the hole. At that point, the volume is half the initial volume. During this process, 75 kJ of heat is transferred to the 100 kPa, 300 K surroundings. Using Cp = 1.005 kJ/kg-K and...
3.0 moles of an ideal gas are subjected to the following processes. First the volume is...
3.0 moles of an ideal gas are subjected to the following processes. First the volume is tripled in an isobaric process. Then it undergoes an isothermal process to a pressure of 9.0 kPa. The volume is then cut in half in another isobaric process after being tripled. Finally, it returns to the original state in an isochoric process. (a) Draw a PV diagram of the cycle. Label each state (vertex) with a letter (A, B, …) and each transition with...
An ideal gas initially at 350 K undergoes an isobaric expansion at 2.50 kPa. The volume...
An ideal gas initially at 350 K undergoes an isobaric expansion at 2.50 kPa. The volume increases from 1.00 m3 to 3.00 m3 and 13.0 kJ is transferred to the gas by heat. (a) What is the change in internal energy of the gas? kJ (b) What is the final temperature of the gas?