Question

A 3.00-kg object is free to slide on a horizontal surface. The object is attached to...

A 3.00-kg object is free to slide on a horizontal surface. The object is attached to a spring of spring constant 300 N/m , and the other end of the spring is attached to a wall. The object is pulled in the direction away from the wall until the spring is stretched 70.0 mm from its relaxed position. The object is not released from rest, but is instead given an initial velocity of 2.50 m/s away from the wall. Ignore friction.

Determine the value of A in the equation for the object's position. Suppose that A>0

Determine the value of ω in the equation for the object's position. Suppose that ω>0

Determine the value of ϕi in the equation for the object's position. Suppose that −π<ϕi≤π

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2 kg object is attached to a spring and is oscillating on a horizontal surface....
A 2 kg object is attached to a spring and is oscillating on a horizontal surface. When the object has a speed of 10 m/s, the spring is stretched 2 m. The spring constant is 10 N/m. Neglect friction. Find the maximum speed of the object. What is the maximum stretch in the spring? What is the object's speed when the spring is stretched 1 m? What is the stretch in the spring when the object's speed is 5 m/s?
A 1.75 kg object is initially at rest on a horizontal frictionless surface and is attached...
A 1.75 kg object is initially at rest on a horizontal frictionless surface and is attached to an initially unstretched spring with a force constant of 50 N/m and negligible mass. A constant horizontal force of 338.75 N is applied to the object. Determine the following when the object has slide a distance 0.75 m: the work done by the applied force  J, the energy stored in the spring  J, the object's final kinetic energy  J, and the object's final speed  m/s.
A 3.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
A 3.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 21.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. (a) Find the force constant of the spring. N/m (b) Find the frequency of the oscillations. Hz (c)...
A 1.50-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
A 1.50-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 28.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. a.)Find the force constant of the spring. b.)Find the frequency of the oscillations. c.)Find the maximum speed of...
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring...
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 4.8 kN/m. The block is pulled to the right so that the spring is stretched 7.2 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 37 N. (a) What is the kinetic energy of the block when it has moved 1.6 cm from...
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
A 4.70-kg object on a frictionless horizontal surface is attached to one end of a horizontal...
A 4.70-kg object on a frictionless horizontal surface is attached to one end of a horizontal spring that has a force constant k = 570 N/m. The spring is stretched 9.30 cm from equilibrium and released. (a) What is the frequency of the motion? _____Hz (b) What is the period of the motion? ______s (c) What is the amplitude of the motion? ______cm (d) What is the maximum speed of the motion? ______m/s (e) What is the maximum acceleration of...
1) An object of mass 3200g is attached to a string with a spring constant 29N/m...
1) An object of mass 3200g is attached to a string with a spring constant 29N/m and set into motion. When the object is 1.74m away from its equilibrium position, it is observed to be moving with speed 2.4m/s. What is the amplitude of the object's oscillation? 2) A small object with mass 320g is attached to a spring constant of 25.4N/m. If the object is set into oscillation, how many cycles of oscillation will it complete each minute?
An object of mass m = 0.25 kg has a horizontal spring attached to its left...
An object of mass m = 0.25 kg has a horizontal spring attached to its left side, and slides along a frictionless surface. The spring constant is κ = 0.4 N m . At t = 0 s, the object is displaced 0.1m to the right of its equilibrium position. Its initial velocity is 0.4 m s , toward the right. a) Calculate the period T of the motion. b) Calculate the angular frequency ω. c) Calculate the frequency ν....
A 2.2 kg object is attached to a horizontal spring of force constant k = 4.5...
A 2.2 kg object is attached to a horizontal spring of force constant k = 4.5 kN/m. The spring is stretched 10 cm from equilibrium and released. (a) Find the frequency of the motion. Hz (b) Find the period. s (c) Find the amplitude. m (d) Find the maximum speed. m/s (e) Find the maximum acceleration. m/s2 (f) When does the object first reach its equilibrium position? ms What is its acceleration at this time? m/s2