Question

A 3.00-kg object is free to slide on a horizontal surface. The object is attached to...

A 3.00-kg object is free to slide on a horizontal surface. The object is attached to a spring of spring constant 300 N/m , and the other end of the spring is attached to a wall. The object is pulled in the direction away from the wall until the spring is stretched 70.0 mm from its relaxed position. The object is not released from rest, but is instead given an initial velocity of 2.50 m/s away from the wall. Ignore friction.

Determine the value of A in the equation for the object's position. Suppose that A>0

Determine the value of ω in the equation for the object's position. Suppose that ω>0

Determine the value of ϕi in the equation for the object's position. Suppose that −π<ϕi≤π

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2 kg object is attached to a spring and is oscillating on a horizontal surface....
A 2 kg object is attached to a spring and is oscillating on a horizontal surface. When the object has a speed of 10 m/s, the spring is stretched 2 m. The spring constant is 10 N/m. Neglect friction. Find the maximum speed of the object. What is the maximum stretch in the spring? What is the object's speed when the spring is stretched 1 m? What is the stretch in the spring when the object's speed is 5 m/s?
A 3.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
A 3.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 21.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. (a) Find the force constant of the spring. N/m (b) Find the frequency of the oscillations. Hz (c)...
A 1.50-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
A 1.50-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 28.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. a.)Find the force constant of the spring. b.)Find the frequency of the oscillations. c.)Find the maximum speed of...
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring...
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 4.8 kN/m. The block is pulled to the right so that the spring is stretched 7.2 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 37 N. (a) What is the kinetic energy of the block when it has moved 1.6 cm from...
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
A 4.70-kg object on a frictionless horizontal surface is attached to one end of a horizontal...
A 4.70-kg object on a frictionless horizontal surface is attached to one end of a horizontal spring that has a force constant k = 570 N/m. The spring is stretched 9.30 cm from equilibrium and released. (a) What is the frequency of the motion? _____Hz (b) What is the period of the motion? ______s (c) What is the amplitude of the motion? ______cm (d) What is the maximum speed of the motion? ______m/s (e) What is the maximum acceleration of...
An object of mass m = 0.25 kg has a horizontal spring attached to its left...
An object of mass m = 0.25 kg has a horizontal spring attached to its left side, and slides along a frictionless surface. The spring constant is κ = 0.4 N m . At t = 0 s, the object is displaced 0.1m to the right of its equilibrium position. Its initial velocity is 0.4 m s , toward the right. a) Calculate the period T of the motion. b) Calculate the angular frequency ω. c) Calculate the frequency ν....
6. A 5.00 kg object is suspended vertically by a spring that is attached to a...
6. A 5.00 kg object is suspended vertically by a spring that is attached to a ceiling at the other end. The object is held at rest such that the spring is initially in its relaxed (unstretched/uncompressed) state. The spring constant of the spring is 50.0 N/m. Determine: a) The lowest point below the spring’s equilibrium position the object will go if it is slowly lowered by hand (5 points) b) The lowest point below the spring’s equilibrium position the...
A 11.1 kg object on a horizontal frictionless surface is attached to a spring with k...
A 11.1 kg object on a horizontal frictionless surface is attached to a spring with k = 1300 N/m. The object is displaced from equilibrium 55.0 cm horizontally and given an initial velocity of 12.0 m/s back toward the equilibrium position. What are (a) the motion's frequency, (b) the initial potential energy of the block-spring system, (c) the initial kinetic energy, and (d) the motion's amplitude?
If a 1 kg object on a horizontal, frictionless surface is attached to a spring, displaced,...
If a 1 kg object on a horizontal, frictionless surface is attached to a spring, displaced, and then released, it will oscillate. If it is displaced 0.120 m from its equilibrium position and released with zero initial speed. After 0.8 s its displacement is found to be 0.120 m on the opposite side, and it has passed the equilibrium position once during this interval. Find the amplitude, the period, the frequency, the angular frequency and the spring constant.