Question

Beryllium-8 is an unstable isotope and decays into two α particles, which are helium nuclei with...

Beryllium-8 is an unstable isotope and decays into two α particles, which are helium nuclei with mass 6.68×10−27kg. This decay process releases 1.5×10−14J of energy. For this problem, let's assume that the mass of the Beryllium-8 nucleus is just twice the mass of an α particle and that all the energy released in the decay becomes kinetic energy of the α particles.

Part A

If a Beryllium-8 nucleus is at rest when it decays, what is the speed of the  α particles after they are released?

Part B

If the Beryllium-8 nucleus is moving in the positive x-direction with a speed of 1.0×106 m/s when it decays, what is the speed of the slower-moving α particle after it is released? Assume that the α particles move entirely in the x-direction.

Part C

If the Beryllium-8 nucleus is moving in the positive x-direction with a speed of 1.0×106 m/s when it decays, what is the speed of the faster-moving α particle after it is released?  Assume that the α particles move entirely in the x-direction.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Beryllium-8 is an unstable isotope and decays into two α particles, which are helium nuclei with...
Beryllium-8 is an unstable isotope and decays into two α particles, which are helium nuclei with mass 6.68×10−27kg. This decay process releases 1.5×10−14J of energy. For this problem, let's assume that the mass of the Beryllium-8 nucleus is just twice the mass of an α particle and that all the energy released in the decay becomes kinetic energy of the α particles. If a Beryllium-8 nucleus is at rest when it decays, what is the speed of the α particles...
4.One beryllium atom (? ≅ 8.00 ?) decays into two helium atoms (? ≅ 4.00 ?)...
4.One beryllium atom (? ≅ 8.00 ?) decays into two helium atoms (? ≅ 4.00 ?) releasing 92.0 ??? of energy. The beryllium atom was initially moving with energy 40.0 ???. Find the velocities of both atoms after decay and the angles of their paths relative to the axis along which the beryllium was moving.
In the form of radioactive decay known as alpha decay, an unstable nucleus emits a helium-atom...
In the form of radioactive decay known as alpha decay, an unstable nucleus emits a helium-atom nucleus, which is called an alpha particle. An alpha particle contains two protons and two neutrons, thus having mass m=4u and charge q=2e. Suppose a uranium nucleus with 92 protons decays into thorium, with 90 protons, and an alpha particle. The alpha particle is initially moving at velocity= 5.89 *10^8, and the radius of alpha particle is r=3.1* 10^ -11.What is the speed of...
A uranium-238 nucleus at rest undergoes radioactive decay, splitting into an alpha particle (helium nucleus) with...
A uranium-238 nucleus at rest undergoes radioactive decay, splitting into an alpha particle (helium nucleus) with mass 6.64×10-27 kg and a thorium nucleus with mass 3.89×10-25 kg. The measured kinetic energy of the alpha particle is 4.01×10-13 J. If after the decay, the alpha particle is observed to move in the positive x direction. After the decay, what direction did the thorium nucleus move? Complete the following statement with less than, greater than or equal to. After the decay, the...
A particle of mass M decays into two identical particles each of mass m, where m...
A particle of mass M decays into two identical particles each of mass m, where m = 0.4M. Prior to the decay, the particle of mass M has a total energy of 5Mc2 in the laboratory reference frame. The velocities of the decay product are along the direction of motion M. Find the velocities of the decay products in the laboratory reference frame. (Round your answer to three decimal places.) 0.999 Incorrect: Your answer is incorrect. c (higher-speed product) 0.620...
A particle with mass M0 is at rest. It decays into two particles with masses m1...
A particle with mass M0 is at rest. It decays into two particles with masses m1 = 6.64 × 10-27 kg and m2 = 5.20 × 10-26 kg. After the decay, m1 moves at 0.95 c. (a) What is the speed of m2 after the decay? (b) What is M0? Answers: (a) 1.09 × 10^8 m/s (b) 7.71 × 10^−26 kg
An unstable nucleus of mass 1.7 ✕ 10−26 kg, initially at rest at the origin of...
An unstable nucleus of mass 1.7 ✕ 10−26 kg, initially at rest at the origin of a coordinate system, disintegrates into three particles. One particle, having a mass of m1 = 2.6 ✕ 10−27 kg, moves in the positive y-direction with speed v1 = 5.4 ✕ 106 m/s. Another particle, of mass m2 = 8.0 ✕ 10−27 kg, moves in the positive x-direction with speed v2 = 3.4 ✕ 106 m/s. Find the magnitude and direction of the velocity of...
Rutherford fired a beam of alpha particles (helium nuclei) at a thin sheet of gold. An...
Rutherford fired a beam of alpha particles (helium nuclei) at a thin sheet of gold. An alpha particle was observed to be deflected by 90.0°; its speed was unchanged. The alpha particles used in the experiment had an initial speed of 1.6 ✕ 107 m/s and a mass of 6.7 ✕ 10−27 kg. Assume the alpha particle collided with a gold nucleus that was initially at rest. Find the speed of the nucleus after the collision.
An alpha particle (α), which is the same as a helium-4 nucleus, is momentarily at rest...
An alpha particle (α), which is the same as a helium-4 nucleus, is momentarily at rest in a region of space occupied by an electric field. The particle then begins to move. Find the speed of the alpha particle after it has moved through a potential difference of −3.45×10−3 V .The charge and the mass of an alpha particle are qα = 3.20×10−19 C and mα = 6.68×10−27 kg , respectively. Part A Mechanical energy is conserved in the presence...
An unstable nucleus of mass 2.1 ? 10?26 kg, initially at rest at the origin of...
An unstable nucleus of mass 2.1 ? 10?26 kg, initially at rest at the origin of a coordinate system, disintegrates into three particles. One particle, having a mass of m1 = 4.6 ? 10?27 kg, moves in the positive y-direction with speed v1 = 6.1 ? 106 m/s. Another particle, of mass m2 = 8.5 ? 10?27 kg, moves in the positive x-direction with speed v2 = 4.5 ? 106 m/s. Find the magnitude and direction of the velocity of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT