Question

1. A crane released a block of mass ? 5.0 kg from a height ℎ of...

1. A crane released a block of mass ? 5.0 kg from a height ℎ of 2.0 m towards a spring with spring constant ? of 85 N/m as shown in the figure. Air resistance with a magnitude of 30.0 N acts on the block as it moves through the vertical height ℎ.

(a) By how many meters was the spring compressed? (Ans.: 1.68 m)

(b) What is the velocity of the block just as it touches the spring? (Ans.: 3.90 m/s)

Homework Answers

Answer #1

a)

let the maximum compression in the spring is x

Using work energy theorem

change in kinetic energy = total work done on the block

0 - 0 = 5 * 9.8 * (2 + x) - 0.50 * 85 * x^2 - 30 * (2)

solving for x

x = 1.68 m

the maximum compression in the spring would be 1.68 m

b) let the speed of block when it touches the spring is v

Using work energy theorem

change in kinetic energy = total work done on the block

0.50 * 5 * v^2 - 0 = 5 * 9.8 * (2 ) - 30 * (2)

solving for v

v = 3.9 m/s

the speed of block when it touches the spring is 3.9 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Pleaed do it ASAP 06. A block of mass 2.0 kg is dropped from a height...
Pleaed do it ASAP 06. A block of mass 2.0 kg is dropped from a height h onto a spring of spring constant 1960 N/m. The compression of the spring is 10 cm. a. Find h. b. Then the block is further pushed down an additional 10 cm and released. What is the elastic potential energy of the compressed spring just before the release?
A block of mass m=12 kg is released from rest on an incline with a coefficient...
A block of mass m=12 kg is released from rest on an incline with a coefficient of kinetic friction 0.25, and at an angle θ=30◦ . Below the block is a spring that can be compressed 2.5 cm by a force of 280 N. The block momentarily stops when it compresses the spring by 5.5 cm. (a) How far does the block move down the incline from its rest position to this stopping point? (b) What is the speed of...
A block of mass m = 2.0 kg is dropped from height h = 40 cm...
A block of mass m = 2.0 kg is dropped from height h = 40 cm onto a spring of spring constant k = 1960 N/m (Fig.8-39 page 204).Find the maximum distance the spring is compressed.
A ball of mass m = 1.60 kg is released from rest at a height h...
A ball of mass m = 1.60 kg is released from rest at a height h = 77.0 cm above a light vertical spring of force constant k as in Figure [a] shown below. The ball strikes the top of the spring and compresses it a distance d = 8.10 cm as in Figure [b] shown below. Neglecting any energy losses during the collision, find the following. (a) Find the speed of the ball just as it touches the spring....
A block of mass 9.1 kg rests on a horizontal frictionless floor, and is connected to...
A block of mass 9.1 kg rests on a horizontal frictionless floor, and is connected to a vertical wall by a spring of force constant 205 N/mN/m as shown in the figure. When the spring is in its equilibrium position (neither stretched nor compressed), the block just touches a second lighter block of mass 3.4 kg at rest on the frictionless floor. The spring is now compressed by 0.12 mm (only the heavier mass is moved towards the wall) and...
A 2.00 kg block is released at the top of a frictionless track from a height...
A 2.00 kg block is released at the top of a frictionless track from a height of 1.50 m. The block travels down the track to a horizontal region where it then attaches to a massless spring with spring constant 400 N/m. What will be the amplitude of the resulting block-spring system?
A 469 g block is released from rest at height h0 above a vertical spring with...
A 469 g block is released from rest at height h0 above a vertical spring with spring constant k = 410 N/m and negligible mass. The block sticks to the spring and momentarily stops after compressing the spring 18.3 cm. How much work is done (a) by the block on the spring and (b) by the spring on the block? (c) What is the value of h0? (d) If the block were released from height 4h0 above the spring, what...
A 1.55-kg block is launched by a spring and slides along a ramp as shown. The...
A 1.55-kg block is launched by a spring and slides along a ramp as shown. The spring has a spring constant of 1180 N/m and is compressed a distance, x, before being released. The block slides up a frictionless ramp of height, H=0.550 m, above where the block leaves the spring. At the top of the ramp it flies horizontally off the ramp. Just before leaving the ramp, the kinetic energy of the block is 8.54 J. After leaving the...
A block with mass 0.460 kg sits at rest on a light but not long vertical...
A block with mass 0.460 kg sits at rest on a light but not long vertical spring that has spring constant 85.0 N/m and one end on the floor. a)How much elastic potential energy is stored in the spring when the block is sitting at rest on it? ANS 0.12J b) A second identical block is dropped onto the first from a height of 4.10 mm above the first block and sticks to it. What is the maximum elastic potential...
A block of mass 0.25 kg is against a spring compressed at 0.20 m with spring...
A block of mass 0.25 kg is against a spring compressed at 0.20 m with spring constant 50 N/m. When the spring is released, the block moves along the frictionless surface until entering a region with the coefficient of kinetic friction equal to 0.30 (when the block enters the friction region it is no longer in contact with the spring ). How far,L,into the region with friction does the block slide before stopping?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT