Question

A particle in an infinite well is in the ground state with an energy of 1.92...

A particle in an infinite well is in the ground state with an energy of 1.92 eV. How much energy must be added to the particle to reach the fifth excited state

(n = 6)? The seventh excited state (n = 8)?

fifth excited state     eV
seventh excited state      eV

Homework Answers

Answer #1

The energy levels of the particle in infinite potential well is given by,

where

is the mass of the particle

is the length of the potential well.

for the ground state,

Then the energy of fifth excited level is

Then energy added to the particle is

similarly, the energy for seventh excited state is

Then energy added to the particle is

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle is in the ground state of an infinite square well. The potential wall at...
A particle is in the ground state of an infinite square well. The potential wall at x = L suddenly (i.e., instantaneously) moves to x = 3L. such that the well is now three times its original size. (a) Let t = 0 be at the instant of the sudden change in the potential well. What is ψ(x, 0)? (b) If you measure the energy of the particle in the new well, what are the possible energies? (c) Estimate the...
An electron is in the ground state of an infinite square well. The energy of the...
An electron is in the ground state of an infinite square well. The energy of the ground state is E1 = 1.39 eV. Use hc=1240 nm eV. (a) What wavelength of electromagnetic radiation would be needed to excite the electron to the n = 3 state?   nm (b) What is the width of the square well? nm
An electron is in the ground state of an infinite square well. The energy of the...
An electron is in the ground state of an infinite square well. The energy of the ground state is E1 = 1.13 eV. (a) What wavelength of electromagnetic radiation would be needed to excite the electron to the n = 7 state? nm (b) What is the width of the square well? nm
Considera particle in the ground state of an infinite square well where the left half of...
Considera particle in the ground state of an infinite square well where the left half of the well rises at a linear rate to a potential of V0in a time τ, and then falls back at a linear rate in a time τ. What is the probability that the particle is now in the first excited state?
An electron is trapped in an infinite one-dimensional well of width = L. The ground state...
An electron is trapped in an infinite one-dimensional well of width = L. The ground state energy for this electron is 3.8 eV. a) Calculated energy of the 1st excited state. b) What is the wavelength of the photon emitted between 1st excited state and ground states? c) If the width of the well is doubled to 2L and mass is halved to m/2, what is the new 3nd state energy? d) What is the photon energy emitted from the...
quantum physics: Considera particle in the ground state of an infinite square well where the left...
quantum physics: Considera particle in the ground state of an infinite square well where the left half of the well rises at a linear rate to a potential of V0in a time t, and then falls back at a linear rate in a time t. What is the probability that the particle is now in the first excited state?
A particle is trapped in an infinite potential well. Describe what happens to the particle’s ground-state...
A particle is trapped in an infinite potential well. Describe what happens to the particle’s ground-state energy and wave function as the potential walls become finite and get lower and lower until they finally reach zero (U = 0 everywhere).
Consider a particle trapped in an infinite square well potential of length L. The energy states...
Consider a particle trapped in an infinite square well potential of length L. The energy states of such a particle are given by the formula: En=n^2ℏ^2π^2 /(2mL^2 ) where m is the mass of the particle. (a)By considering the change in energy of the particle as the length of the well changes calculate the force required to contain the particle. [Hint: dE=Fdx] (b)Consider the case of a hydrogen atom. This can be modeled as an electron trapped in an infinite...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well is 4.0 eV. If the width of the well is doubled, what is its lowest energy? b) Find the distance of closest approach of a 16.0-Mev alpha particle incident on a gold foil. c) The transition from the first excited state to the ground state in potassium results in the emission of a photon with  = 310 nm. If the potassium vapor is...
Take the potential energy of a hydrogen atom to be zero for infinite separation of the...
Take the potential energy of a hydrogen atom to be zero for infinite separation of the electron and proton. Then the ground state energy of a hydrogen atom is –13.6 eV. The energy of the first excited state is: A) 0eV B) –3.4 eV C) –6.8 eV D) –10.2 eV E) –27 eV