Question

A system consists of a 4.0-kg cart and a 1.2-kg cart attached to each other by...

A system consists of a 4.0-kg cart and a 1.2-kg cart attached to each other by a compressed spring. Initially, the system is at rest on a low-friction track. When the spring is released, an explosive separation occurs at the expense of the internal energy of the compressed spring. The change in the spring's internal energy during the separation is 1.0 kJ. What is the speed of 1.2-kg cart right after the separation? What is the speed of 4.0-kg cart right after the separation?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A cart of mass m = 1.2 kg is placed on a horizontal track. The cart...
A cart of mass m = 1.2 kg is placed on a horizontal track. The cart rolls with very little friction, and is attached to the left end of the track by a spring with negligible mass, spring constant k = 20.0 N/m, and un-stretched length 25.0 cm. (A) The cart is moved 7.5 cm to the left of its equilibrium position, and is then released from rest. Draw a sketch of the position x along the track of the...
A mass of 0.5 kg is attached to a spring whose k=8000 N/m. The system rests...
A mass of 0.5 kg is attached to a spring whose k=8000 N/m. The system rests on a level friction-free air track and is initially at rest. A second mass makes a head-on elastic collision with the mass attached to the spring; thereafter the oscillating system vibrates with amplitude of 0.5 m. If the incident mass is 0.4 kg, what was its incident speed?
Give all five aspects of every problem: visual representation, principles/laws/assumptions of physics, symbolic representation - equations...
Give all five aspects of every problem: visual representation, principles/laws/assumptions of physics, symbolic representation - equations with variables, numerical solution, and check - refer to the principles you invoked and comment on the nature of the numerical solution. On a low-friction track, two carts coupled together are initially moving to the right at 3.0 m/s. The rear cart has an inertia of 2.5 kg and he lead cart’s inertia is 4.0 kg. An explosive charge attached to the coupling is...
Mazur 9.40: Two identical 0.50 kg carts, each 0.10 m long, are at rest on a...
Mazur 9.40: Two identical 0.50 kg carts, each 0.10 m long, are at rest on a low-friction track and are connected by a spring that is initially at its relaxed length of 0.50 m and is of negligible inertia. You give the cart on the left a push to the right (that is, toward the other cart), exerting a constant 5.0-N force. You stop pushing at the instant when the cart has moved 0.40 m. At this instant, the relative...
A 2.90 kg block on a horizontal floor is attached to a horizontal spring that is...
A 2.90 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0340 m . The spring has force constant 850 N/m . The coefficient of kinetic friction between the floor and the block is 0.42 . The block and spring are released from rest and the block slides along the floor. Part A What is the speed of the block when it has moved a distance of 0.0190 m from its initial position?...
A cart with mass 271 g, moving on a frictionless linear air track at an initial...
A cart with mass 271 g, moving on a frictionless linear air track at an initial speed of 1.08 m/s hits an initially stationary cart of unknown mass. After the collision, the first cart continues in its original direction at 0.92 m/s. The collision is elastic. (a) What is the mass of the second cart? (b) What is the speed of the second cart? A block of mass 0.29 kg is placed on top of a light, vertical spring of...
A 0.150-kg cart is attached to an ideal spring with a force constant of (spring constant)...
A 0.150-kg cart is attached to an ideal spring with a force constant of (spring constant) of 3.58 N/m undergoes simple harmonic motion and has a speed of 1.5 m/s at the equilibrium position. At what distance from the equilibrium position are the kinetic energy and potential energy of the system the same?
A mass and spring system has mass m = 1.2 kg. The spring constant is unknown....
A mass and spring system has mass m = 1.2 kg. The spring constant is unknown. Also, neglect friction for this system. A) When the system is compressed by 1.00 cm and let go the frequency of the periodic motion is 0.75 Hz. What is the value of the spring constant k? B) What is the maximum speed vmax of the motion? C) What is the total energy TE = PE + KE in the system?
A spring-mass system consists of a 0.5 kg mass attached to a spring with a force...
A spring-mass system consists of a 0.5 kg mass attached to a spring with a force constant of k = 8 N/m. You may neglect the mass of the spring. The system undergoes simple harmonic motion with an amplitude of 5 cm. Calculate the following: 1. The period T of the motion 2. The maximum speed Vmax 3. The speed of the object when it is at x = 3.5 cm from the equilibrium position. 4. The total energy E...
A mass of 0.5 kg is attached to the end of a massless spring of spring...
A mass of 0.5 kg is attached to the end of a massless spring of spring constant 0.40 N/m. It is released from rest from an extended position. After 0.6 s, the speed of the mass is measured to be 2.5 m/s. What is the amplitude of oscillation? What is the total energy (relative to the mass at rest in the unextended position) contained in this system?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT