Question

1. Two narrow slits are exposed to light of 465.45 nm. At a screen 3.000 microns...

1. Two narrow slits are exposed to light of 465.45 nm. At a screen 3.000 microns from the slit, the 1st order interference maxima on either sides of the central maximum are separated by 2.721 microns. What is the slit's spacing in microns?

2. Determine the  temperature (in °C) of a black body that is emitting radiations at a peak wavelength of 407.8 nm.

3. Determine the temperature (in °C) of a black body that is emitting radiations with an integrated intensity of 29,560,304 W/m2.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4) Two narrow slits are separated by a distance d. Their interference pattern is to be...
4) Two narrow slits are separated by a distance d. Their interference pattern is to be observed on a screen a large distance L away. a) Calculate the spacing y of the maxima of the screen for light of wavelength 500 nm when L = 1 m and d = 1 cm. b) Would you expect to observe the interference of light on the screen for this situation? Explain. c) How close together should the slits be placed for the...
A monochromatic light with wavelength 480.0 nm strikes a pair of narrow slits with spacing 0.100...
A monochromatic light with wavelength 480.0 nm strikes a pair of narrow slits with spacing 0.100 mm. The first dark fringe is formed on a screen at a vertical distance of 1.20 cm from the center of a screen placed in front of the slit. How far away is the screen placed What is the distance on the screen from the center of the interference pattern to the m = 3 bright fringe? What is the shortest distance from the...
1. a. Light of wavelength 694.3 nm from a ruby laser is incident on two narrow...
1. a. Light of wavelength 694.3 nm from a ruby laser is incident on two narrow parallel slits cut in a thin sheet of metal. The slits are separated by a distance of 0.088 mm. A screen is placed 1.5 m beyond the slits. Find the intensity, relative to the central maximum, at a point on the screen 1.4 cm to one side of the central maximum. b. In a double-slit experiment, the intensity at the peak of the central...
An interference pattern is produced by light with a wavelength 560 nm from a distant source...
An interference pattern is produced by light with a wavelength 560 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.550 mm . a) If the slits are very narrow, what would be the angular position of the first-order, two-slit, interference maxima? b)What would be the angular position of the second-order, two-slit, interference maxima in this case? c)Let the slits have a width 0.370 mm . In terms of the intensity...
White light falls on two narrow slits separated by 0.40 mm. The interference pattern is observed...
White light falls on two narrow slits separated by 0.40 mm. The interference pattern is observed on a screen 3.0 m away. What is the separation between the first maxima for red light (l = 700 nm) and the first maxima for violet light (l = 400 nm)?
An interference pattern is produced by light with a wavelength 600 nm from a distant source...
An interference pattern is produced by light with a wavelength 600 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.500 mm . Part A If the slits are very narrow, what would be the angular position of the first-order, two-slit, interference maxima? Part B What would be the angular position of the second-order, two-slit, interference maxima in this case? Part C Let the slits have a width 0.330 mm ....
Parallel rays of monochromatic light with wavelength 587 nm illuminate two identical slits and produce an...
Parallel rays of monochromatic light with wavelength 587 nm illuminate two identical slits and produce an interference pattern on a screen that is 75.0 cm from the slits. The centers of the slits are 0.640 mm apart and the width of each slit is 0.434 mm. If the intensity at the center of the central maximum is 3.00×10−4 W/m2 , what is the intensity at a point on the screen that is 0.710 mm from the center of the central...
A physics student demonstrates Young's double-slit experiment using 632.8 nm light from a HeNe laser. The...
A physics student demonstrates Young's double-slit experiment using 632.8 nm light from a HeNe laser. The laser light passes through two narrowly separated slits that have a spacing of d. The light produces an interference pattern on a screen that is 4.20 meters in front of the slits. The spacing between the m=2 and m=3 maxima as seen on the screen is 12.0 cm. Determine the spacing between the slits. For the situation described above, determine the phase difference between...
An interference pattern is produced by light with a wavelength 550 nm from a distant source...
An interference pattern is produced by light with a wavelength 550 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.580 mm . a) If the slits are very narrow, what would be the angular position of the first-order, two-slit, interference maxima? (Solve for theta, in radians) b) What would be the angular position of the second-order, two-slit, interference maxima in this case? (Solve for theta, in radians) c) Let the...
Coherent light (600 nm) passes through two narrow slits separated by 0.04 mm. An interference pattern...
Coherent light (600 nm) passes through two narrow slits separated by 0.04 mm. An interference pattern is observed on a screen at a distance 1.50 m away. (a) What is the vertical distance of the second maximum (not counting the central maximum) from the center of the interference pattern? (b) At what distance from the center does the intensity fall to 1/4th of the intensity at the center?