Question

a) Originally, a H-atom is an n=5 state. The (total) energy of an electron in this...

a) Originally, a H-atom is an n=5 state. The (total) energy of an electron in this state is

En = _______ eV.

b) After this atom absorbs a 66-nm photon, the electron is ejected. The energy of the absorbed photon is

Ey = _______eV.

c) The kinetic energy of the ejected electron is K = _________eV

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Originally, a H-atom is in an n=2 state. a) After this atom absorbs a 77-nm photon,...
Originally, a H-atom is in an n=2 state. a) After this atom absorbs a 77-nm photon, the electron is ejected. The energy of the absorbed photon is.... b) The kinetic energy of the ejected electron is...
a hydrogen atom initially in its n=4 state absorbs a photon of wavlength 238.5 nm, which...
a hydrogen atom initially in its n=4 state absorbs a photon of wavlength 238.5 nm, which is enough to ionize it. how much kinetic energy in eV does the ejected electron have?
Answer the following questions using the Bohr model of the hydrogen atom. a) A hydrogen atom...
Answer the following questions using the Bohr model of the hydrogen atom. a) A hydrogen atom is the n = 3 excited state when its electron absorbs a photon of energy 4.40 eV. Draw a diagram roughly to scale, of relevant energy levels for this situation. Make sure to show and label the initial energy of the H atom in the n=3 state, the energy level at which this atom loses its electron, and kinetic energy of the electron. b)What...
A hydrogen atom transitions from the n = 6 excited state to the n = 3...
A hydrogen atom transitions from the n = 6 excited state to the n = 3 excited state, emitting a photon. a) What is the energy, in electron volts, of the electron in the n = 6 state? How far from the nucleus is the electron? b) What is the energy, in electron volts, of the photon emitted by the hydrogen atom? What is the wavelength of this photon? c) How many different possible photons could the n = 6...
A ground-state H atom absorbs a photon of wavelength 92.62 nm. What higher energy level did...
A ground-state H atom absorbs a photon of wavelength 92.62 nm. What higher energy level did the electron reach?
1) An electron in the hydrogen atom drops from the n=5 level to the n=1 level....
1) An electron in the hydrogen atom drops from the n=5 level to the n=1 level. What are the frequency, wavelength, and energy of the emitted photon? In which series does this photon occur? How much energy must be absorbed by the atom in order to kick the electron back up to the fifth level? 2) Calculate the maximum wavelength for the initiation of a photoelectric current in the aluminum (work function W = 4.28 eV).
An ionized atom has only a single electron. The n = 6 state of this atom...
An ionized atom has only a single electron. The n = 6 state of this atom has an energy of -9.444 eV. Find the radius of the n = 3 state. Group of answer choices 0.233 nm 0.182 nm 0.0952 nm 0.204 nm 0.0317 nm
1. The energy of the electron in the lowest level of the hydrogen atom (n=1) is...
1. The energy of the electron in the lowest level of the hydrogen atom (n=1) is -2.179×10-18 J. What is the energy of the electron in level n=5? -8.716×10-20 J 2.The electron in a hydrogen atom moves from level n=6 to level n=4. a) Is a photon emitted or absorbed? b) What is the wavelength of the photon?
In an atom, an electron is jumping from state with an energy of –(2.51) eV to...
In an atom, an electron is jumping from state with an energy of –(2.51) eV to a state with an energy of –(5.32) eV. Find the wavelength of the emitted photon.
A hydrogen atom is in its first excited state (n = 2). Using Bohr's atomic model,...
A hydrogen atom is in its first excited state (n = 2). Using Bohr's atomic model, calculate the following. (a) the radius of the electron's orbit (in nm) nm (b) the potential energy (in eV) of the electron eV (c) the total energy (in eV) of the electron eV