Question

An object is a distance 15.6cm to the left of a diverging lens ("Lens 1") with...

An object is a distance 15.6cm to the left of a diverging lens ("Lens 1") with a focal length of -19cm. Lens 1 is itself a distance 29cm to the left of a second diverging lens ("Lens 2") with a focal length -19cm.

The object is along the optical axis of the two-lens system.

How far is the image of the object due to Lens 2 away from Lens 2? Note that in this case the light has passed through Lens 1 first. Answer in cm.

If the image is to the left of Lens 2 your answer should be negative, and if it is to the right of Lens 2 your answer should be positive.

Homework Answers

Answer #1

If your query is been resolved please upvote and if you have any doubt please comment down below. It takes a lot of time and effort to answer each question please encourage the effort by upvote/like to answer.

Thanks and regards.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An object is placed 33.0 cm to the left of a diverging lens with a focal...
An object is placed 33.0 cm to the left of a diverging lens with a focal length of -20.0 cm. A converging lens of focal length of 33.0 cm is placed a distance d to the right of the diverging lens. Find the distance d that the final image is at infinity. ______ cm
5.) Determine the focal length of a diverging lens using a virtual object given: Position of...
5.) Determine the focal length of a diverging lens using a virtual object given: Position of object/light source on optical bench = 10 cm Position of 10 cm convex lens on optical bench = 40 cm Position of image on optical bench = 57.2 cm Position of -15 cm concave lens on optical bench = 45 cm Position of image on screen = 92.2 cm a) What is the object distance do2 for the second lens? b) Is the object...
An object is 5.0 cm to the left of a diverging lens of focal length +10...
An object is 5.0 cm to the left of a diverging lens of focal length +10 cm. A second diverging lens, of focal length +15 cm, is 30 cm to the right of the first lens. What is the distance between the original object and the final image is? 59 cm 24 cm 95 cm 11 cm
A small object is placed to the left of a convex lens and on its optical...
A small object is placed to the left of a convex lens and on its optical axis. The object is 30 cm from the lens, which has a focal length of 49 cm. If the object is moved to a position 57 cm away, what will the image position be? (A positive value for p, or position, means the image is on the right side of the lens.) p = ? cm Describe the nature of this new image. (Select...
Two lenses are placed along the x axis, with a diverging lens of focal length −8.70...
Two lenses are placed along the x axis, with a diverging lens of focal length −8.70 cm on the left and a converging lens of focal length 17.0 cm on the right. When an object is placed 14.0 cm to the left of the diverging lens, what should the separation s of the two lenses be if the final image is to be focused at x = ∞?
Two lenses are placed along the x axis, with a diverging lens of focal length −7.40...
Two lenses are placed along the x axis, with a diverging lens of focal length −7.40 cm on the left and a converging lens of focal length 15.0 cm on the right. When an object is placed 14.0 cm to the left of the diverging lens, what should the separation s of the two lenses be if the final image is to be focused at x = ∞?
When an object is placed at the proper distance to the left of a converging lens,...
When an object is placed at the proper distance to the left of a converging lens, the image is focused on a screen 30cm to the right of the lens. A diverging lens with focal length f=-24cm is now placed 15cm to the right of the converging lens. How far and in which direction do we need to move the screen to get a sharp image? How much larger is the new image?
The distance between an object and its image formed by a diverging lens is 47.7 cm....
The distance between an object and its image formed by a diverging lens is 47.7 cm. The focal length of the lens is -237.3 cm. (a) Find the image distance. cm (b) Find the object distance. cm
The distance between an object and its image formed by a diverging lens is 49.3 cm....
The distance between an object and its image formed by a diverging lens is 49.3 cm. The focal length of the lens is -209.7 cm. a.) Find the image distance b.) Find the object diastance
1) The distance from the lens to the retina is 3.1 cm, what is the effective...
1) The distance from the lens to the retina is 3.1 cm, what is the effective focal length of the lens when staring at an object infinitely far away? 2) An object is moved to 40cm from the eye. What must the focal length of the eye be to focus the image on the retina? 3) In the near sighted eye, images focus before hitting the retina. Suppose the focal length of the lens is 1.9 cm, while the distance...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT